已知函數(shù)
(1)求證:f(x)在(0,+∞)上是單調(diào)遞增函數(shù);
(2)若f(x)在上的值域是,求a的值.
【答案】分析:(1)利用函數(shù)單調(diào)性的定義,設(shè)x2>x1>0,再將f(x1)-f(x2)作差后化積,證明即可;
(2)由(1)知f(x)在(0,+∞)上是單調(diào)遞增的,從而在[,2]上單調(diào)遞增,由f(2)=2可求得a的值.
解答:證明:(1)證明:設(shè)x2>x1>0,則x2-x1>0,x1x2>0,
=
∴f(x2)>f(x1),
∴f(x)在(0,+∞)上是單調(diào)遞增的.
(2)∵f(x)在(0,+∞)上是單調(diào)遞增的,
∴f(x)在上單調(diào)遞增,
,

點(diǎn)評(píng):本題考查函數(shù)單調(diào)性的判斷與證明,著重考查函數(shù)單調(diào)性的定義及其應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年安徽省合肥市高三第一次教學(xué)質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

1求證:時(shí),恒成立;

2當(dāng)時(shí),求的單調(diào)區(qū)間

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆云南省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求證:

(2)解不等式

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年寧夏高三第五次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分l0分)選修4—5:不等式選講

已知函數(shù)

(1)求證:;

(2)解不等式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西吉安寧岡中學(xué)高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求證函數(shù)在區(qū)間上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時(shí)相應(yīng)的近似值(誤差不超過(guò));(參考數(shù)據(jù),,

(2)當(dāng)時(shí),若關(guān)于的不等式恒成立,試求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省鷹潭市高三第二次模擬考試?yán)砜茢?shù)學(xué)卷 題型:解答題

已知函數(shù)

(1)求證函數(shù)在區(qū)間上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時(shí)相應(yīng)的近似值(誤差不超過(guò));(參考數(shù)據(jù),

(2)當(dāng)時(shí),若關(guān)于的不等式恒成立,試求實(shí)數(shù)的取值范圍.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案