設(shè)A是單位圓x2+y2=1上任意一點,l是過點A與x軸垂直的直線,D是直線l與x軸的交點,點M在直線l上,且滿足當點A在圓上運動時,記點M的軌跡為曲線C。

(1)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求其焦點坐標。

(2)過原點斜率為K的直線交曲線C于P,Q兩點,其中P在第一象限,且它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的K>0,都有PQ⊥PH?若存在,請說明理由。

【解析】

【點評】本題考查橢圓的標準方程,直線與圓錐曲線的位置關(guān)系;考查分類討論的數(shù)學思想以及運算求解的能力.本題是一個橢圓模型,求解標準方程時注意對焦點的位置分類討論,不要漏解;對于探討性問題一直是高考考查的熱點,一般先假設(shè)結(jié)論成立,再逆推所需要求解的條件,對運算求解能力和邏輯推理能力有較高的要求.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•湖北)設(shè)A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當點A在圓上運動時,記點M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;
(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:高考真題 題型:解答題

設(shè)A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足|DM|=m|DA|(m>0,且m≠1)。當點A在圓上運動時,記點M的軌跡為曲線C。
(1)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;
(2)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省佛山市順德區(qū)高二(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

設(shè)A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當點A在圓上運動時,記點M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;
(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年湖北省高考數(shù)學試卷(理科)(解析版) 題型:解答題

設(shè)A是單位圓x2+y2=1上的任意一點,i是過點A與x軸垂直的直線,D是直線i與x軸的交點,點M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當點A在圓上運動時,記點M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點坐標;
(Ⅱ)過原點且斜率為k的直線交曲線C于P、Q兩點,其中P在第一象限,它在y軸上的射影為點N,直線QN交曲線C于另一點H,是否存在m,使得對任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案