【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),過點且傾斜角為的直線與曲線交于兩點.

(1)求的取值范圍;

(2)求中點的軌跡的參數(shù)方程.

【答案】(1) (2) 為參數(shù), ).

【解析】

1)求出曲線和直線的普通方程,通過直線與圓相交求出斜率的范圍,從而得出傾斜角的范圍;

2)設(shè)出對應(yīng)的參數(shù),聯(lián)立直線與圓的方程,借助韋達定理表示的參數(shù),從而得出點的軌跡的參數(shù)方程.

解:(1) 曲線的直角坐標方程為,

時,交于兩點,

時,記,則的方程為,

交于兩點當且僅當,

解得

,

綜上的取值范圍是.

(2)的參數(shù)方程為為參數(shù),),

設(shè)對應(yīng)的參數(shù)分別為

滿足,

由韋達定理可得:,

,

又點的坐標滿足

所以點的軌跡的參數(shù)方程為為參數(shù), ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知頂點在原點,焦點在軸上的拋物線過點.

1)求拋物線的標準方程;

2)斜率為的直線與拋物線交于、兩點,點是線段的中點,求直線的方程,并求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在無窮數(shù)列中,是給定的正整數(shù),,

(Ⅰ)若,寫出的值;

(Ⅱ)證明:數(shù)列中存在值為的項;

(Ⅲ)證明:若互質(zhì),則數(shù)列中必有無窮多項為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱ABCD-A1B1C1D1中,底面ABCD為正方形,側(cè)棱AA1⊥底面ABCD,E為棱AA1的中點,AB=2,AA1=3

(Ⅰ)求證:A1C∥平面BDE

(Ⅱ)求證:BDA1C;

(Ⅲ)求三棱錐A-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格紙上的小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的外接球的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為復數(shù),為純虛數(shù),

1)當求點的軌跡方程;

2)當時,若為純虛數(shù),求:的值和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,直線:交拋物線兩點,

(1)若的中點為,直線的斜率為,證明:為定值;

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C:x2=4y的焦點為F,直線:y=kx+b(k≠0)交拋物線C于A、B兩點,|AF|+|BF|=4,M(0,3).

(1)若AB的中點為T,直線MT的斜率為,證明:k· 為定值;

(2)求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于兩點,且,求直線的傾斜角.

查看答案和解析>>

同步練習冊答案