19.已知正方形ABCD中,點E在BC上,連接AE,過點B作BF⊥AE于點G,交CD于點F.
(1)如圖1,連接AF,若AB=4,BE=1,求AF的長;
(2)如圖2,連接BD,交AE于點N,連接AC,分別交BD、BF于點O、M,連接GO,求證:GO平分∠AGF;
(3)如圖3,在第(2)問的條件下,連接CG,若CG⊥GO,求證:AG=$\sqrt{2}$CG.

分析 (1)由正方形的性質(zhì)得出BC=CD=AD=AB=4,∠ABE=∠C=∠D=90°,AC⊥BD,∠ABO=45°,證出∠BAE=∠CBF,由ASA證明△BCF≌△ABE,得出CF=BE=1,因此DF=CD-CF=3,由勾股定理求出AF即可;
(2)證明A、B、G、O四點共圓,由圓周角定理得出∠AGO=∠ABO=45°,求出∠FGO=453,即可得出結(jié)論;
(3)連接EF,證明C、E、G、F四點共圓,由圓周角定理得出∠EFC=∠EGC=45°,證出△CEF是等腰直角三角形,CE=CF,同(1)得:△BCF≌△ABE,得出CF=BE,因此CE=BE=$\frac{1}{2}$BC,得出OA=$\frac{1}{2}$AC=$\sqrt{2}$CE,由(1)得:A、B、G、O四點共圓,由圓周角定理得出∠BOG=∠BAE,證出∠GOA=∠GEC,得出△AOG∽△CEG,由相似三角形的對應邊成比例得出$\frac{AG}{CG}$=$\frac{OA}{CE}$=$\sqrt{2}$,即可得出結(jié)論.

解答 (1)解:∵四邊形ABCD是正方形,
∴BC=CD=AD=AB=4,∠ABE=∠C=∠D=90°,AC⊥BD,∠ABO=45°,
∴∠ABG+∠CBF=90°,
∵BF⊥AE,
∴∠ABG+∠BAE=90°,
∴∠BAE=∠CBF,
在△BCF和△ABE中,$\left\{\begin{array}{l}{∠C=∠ABE}\\{BC=AB}\\{∠CBF=∠BAE}\end{array}\right.$,
∴△BCF≌△ABE(ASA),
∴CF=BE=1,
∴DF=CD=CF=3,
∴AF=$\sqrt{{4}^{2}+{3}^{2}}$=5;
(2)證明:∵AC⊥BD,BF⊥AE,
∴∠AOB=∠AGB=∠AGF=90°,
∴A、B、G、O四點共圓,
∴∠AGO=∠ABO=45°,
∴∠FGO=90°-45°=45°=∠AGO,
∴GO平分∠AGF;
(3)證明:連接EF,如圖所示:
∵CG⊥GO,
∴∠OGC=90°,
∵∠EGF=∠BCD=90°,
∴∠EGF+∠BCD=180°,
∴C、E、G、F四點共圓,
∴∠EFC=∠EGC=180°-90°-45°=45°,
∴△CEF是等腰直角三角形,
∴CE=CF,
同(1)得:△BCF≌△ABE,
∴CF=BE,
∴CE=BE=$\frac{1}{2}$BC,
∴OA=$\frac{1}{2}$AC=$\frac{\sqrt{2}}{2}$BC=$\sqrt{2}$CE,
由(1)得:A、B、G、O四點共圓,
∴∠BOG=∠BAE,
∵∠GEC=90°+∠BAE,∠GOA=90°+∠BOG,
∴∠GOA=∠GEC,
又∵∠EGC=∠AGO=45°,
∴△AOG∽△CEG,
∴$\frac{AG}{CG}$=$\frac{OA}{CE}$=$\sqrt{2}$,
∴AG=$\sqrt{2}$CG.

點評 本題是四邊形綜合題目,考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、四點共圓、圓周角定理、等腰直角三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)等知識,本題綜合性強,難度較大,特別是(3)中,需要證明四點共圓和三角形相似才能得出結(jié)論.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.四面體ABCD的四個頂點都在某個球O的表面上,△BCD是邊長為3$\sqrt{3}$的等邊三角形,當A在球O表面上運動時,四面體ABCD所能達到的最大體積為$\frac{81\sqrt{3}}{4}$,則四面體OBCD的體積為( 。
A.$\frac{81\sqrt{3}}{8}$B.$\frac{27\sqrt{3}}{4}$C.9$\sqrt{3}$D.$\frac{27\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知集合M={x|2x2-3x-2=0},集合N={x|ax=1},若N?M,那么a的值是0或-2或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知p:|1-$\frac{x-1}{3}}$|≤2,q:1-m≤x≤1+m(m>0),若¬p是¬q的充分而不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≤0}\\{ln(x+1),x>0}\end{array}\right.$,若|f(x)|≥ax-1恒成立,則a的取值范圍[-4,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如圖,三個邊長為2的等邊三角形有一條邊在同一條直線上,邊GD上有10個不同的點P1,P2,P3…P10,則$\overrightarrow{AF}$•($\overrightarrow{A{P_1}$+$\overrightarrow{A{P_2}}$+$\overrightarrow{A{P_3}}$+…+$\overrightarrow{A{P_{10}}}$)=180.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x2-1)的定義域為[0,3],則函數(shù)y=f(x)的定義域為( 。
A.[0,1]B.[2,$\frac{5}{2}$]C.[-1,8]D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設數(shù)列{an}滿足對任意的n∈N*,Pn(n,an)滿足$\overrightarrow{{P_n}{P_{n+1}}}$=(1,2),且a1+a2=4,則數(shù)列{$\frac{1}{{{a_n}•{a_{n+1}}}}$}的前n項和Sn為$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若拋物線y2=8x上一點A到直線x=-2的距離等于它到點B(4,0)的距離,則|AB|的值為5.

查看答案和解析>>

同步練習冊答案