三個數(shù)a=0.22,b=log20.2,c=20.2之間的大小關(guān)系是( 。
A、a<c<bB、a<b<cC、b<a<cD、b<c<a
分析:根據(jù)指數(shù)函數(shù),對數(shù)函數(shù)和冪函數(shù)的性質(zhì)求出a,b,c的取值范圍即可比較大小.
解答:解:∵0<0.22<1,log20.2<0,20.2>1,
∴0<a<1,b<0,c>1.
故b<a<c.
故選:B.
點評:本題主要考查函數(shù)值的大小比較,利用指數(shù)函數(shù),對數(shù)函數(shù)和冪函數(shù)的性質(zhì)確定a,b,c的取值范圍是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出如下三個命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
③在△ABC中,“A>45°”是“sinA>
2
2
”的充要條件.
其中不正確的命題的個數(shù)是( 。
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(x0,y0)是曲線y=
1x
(x>0)上的一個動點,曲線C在點P處的切線與x,y軸分別交于A,B兩點,點O是坐標(biāo)原點,有下列三個命題:
①PA=PB;
②△OAB的面積是定值;
③曲線C上存在兩點M,N,使得△OMN為等腰直角三角形.
其中真命題的個數(shù)是
2
2
(填寫命題的代號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
(1)(幾何證明選講選做題)如圖,點A,B,C是圓O上的點,且BC=6,∠BAC=120°,則圓O的面積等于
12π
12π

(2)(不等式選講選做題)若存在實數(shù)x滿足|x-3|+|x-m|<5,則實數(shù)m的取值范圍為
(-2,8)
(-2,8)

(3)(極坐標(biāo)與參數(shù)方程選講選做題)設(shè)曲線C的參數(shù)方程為
x=2+3cosθ
y=-1+3sinθ
(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為
7
10
10
的點的個數(shù)有
2
2
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年高考數(shù)學(xué)文科(寧夏卷) 題型:013

min{a,b,c}表示a,b,c三個數(shù)中的最小值.

設(shè)f(x)min{22,x2,10x}(x0),則f(x)的最大值為

[  ]

A.4

B.5

C.6

D.7

查看答案和解析>>

同步練習(xí)冊答案