2.設(shè)隨機(jī)變量X服從正態(tài)分布N(2,32),若P(X>m-1)=P(X<2m+1),則m=$\frac{4}{3}$.

分析 利用正態(tài)分布的對(duì)稱性,列出方程求解即可.

解答 解:隨機(jī)變量X服從正態(tài)分布N(2,32),對(duì)稱軸為:X=2,
若P(X>m-1)=P(X<2m+1),
可得2-m+1=2m+1-2,
解得m=$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.

點(diǎn)評(píng) 本題考查正態(tài)分布概率的性質(zhì),對(duì)稱性的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)向量$\overrightarrow{a}$=($\sqrt{3}$sinx,sinx),$\overrightarrow$=(cosx,sinx),x∈[0,$\frac{π}{2}$].
(1)若|$\overrightarrow{a}$|=|$\overrightarrow$|,求x的值;
(2)設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-$\frac{1}{2}$,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.直線(2a+5)x-y+4=0與2x+(a-2)y-1=0互相垂直,則a的值是( 。
A.-4B.4C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=3,an≠0,anan+1=pSn+6,且{an}為等差數(shù)列,則常數(shù)p=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,anan+1=2n,則S20=( 。
A.1024B.1086C.2048D.3069

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在二項(xiàng)式(x-1)4033的展開式中,系數(shù)最小的項(xiàng)是第2017項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a2a3=128,a3+a4=48.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{nlo{g}_{2}{a}_{n}}$,Sn是數(shù)列{bn}的前n項(xiàng)和,不等式Sn>log2(a-2)對(duì)任意正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在△ABC中,已知點(diǎn)D在BC邊上,且$\overrightarrow{AD}$•$\overrightarrow{AC}$=0,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,BD=$\sqrt{3}$,則cosC=( 。
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$=(cos20°,sin20°),$\overrightarrow$=(sin10°,cos10°).若t為實(shí)數(shù),且$\overrightarrow{u}$=$\overrightarrow{a}$+t$\overrightarrow$,則|$\overrightarrow{u}$|的最小值為( 。
A.$\sqrt{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案