對(duì)a,b∈R+,a+b≥2
ab
-------大前提,
 x+
1
x
≥2
x•
1
x
,------小前提,
所以x+
1
x
≥2
,-------結(jié)  論,
以上推理過(guò)程中的錯(cuò)誤為
(2)(3)
(2)(3)

(1)大前提      (2)小前提       (3)結(jié)論        (4)無(wú)錯(cuò)誤.
分析:三段論包含:大前提、小前提,結(jié)論,當(dāng)且僅當(dāng)大前提、小前提正確時(shí),結(jié)論正確,由于小前提沒有條件x∈R+,故小前提錯(cuò)誤,從而結(jié)論錯(cuò)誤.
解答:解:根據(jù)基本不等式可知,大前提正確,而小前提,沒有條件x∈R+,故小前提錯(cuò)誤,從而結(jié)論錯(cuò)誤
故答案為:(2)(3)
點(diǎn)評(píng):本題的考點(diǎn)是演繹推理,主要考查三段論.三段論包含:大前提、小前提,結(jié)論,當(dāng)且僅當(dāng)大前提、小前提正確時(shí),結(jié)論正確
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對(duì)任意a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì):
(1)對(duì)任意a,b∈R,a*b=b*a;
(2)對(duì)任意a∈R,a*0=a;
(3)對(duì)任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=(2x)*
1
2x
的性質(zhì),有如下說(shuō)法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-
1
2
),(
1
2
,+∞)

其中所有正確說(shuō)法的個(gè)數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對(duì)于任意給定的a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì);
(1)對(duì)任意a,b∈R,a*b=b*a;
(2)對(duì)任意a∈R,a*0=a;
(3)對(duì)任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=(3x)*(
1
3x
)
的性質(zhì),有如下說(shuō)法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-
1
3
),(
1
3
,+∞)

其中所有正確說(shuō)法的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江二模)在實(shí)數(shù)集R中定義一種運(yùn)算“⊕”,對(duì)任意a,b∈R,a⊕b為唯一確定的實(shí)數(shù)且具有性質(zhì):
(1)對(duì)任意a,b∈R,有a⊕b=b⊕a;
(2)對(duì)任意a∈R,有a⊕0=a;
(3)對(duì)任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函數(shù)f(x)=x2
1x2
,則下列命題中:
(1)函數(shù)f(x)的最小值為3;
(2)函數(shù)f(x)為奇函數(shù);
(3)函數(shù)f(x)的單調(diào)遞增區(qū)間為(-1,0)、(1,+∞).
其中正確例題的序號(hào)有
(1)(3)
(1)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:棗莊一模 題型:單選題

在實(shí)數(shù)集R中定義一種運(yùn)算“*”,對(duì)任意a,b∈R,a*b為唯一確定的實(shí)數(shù),且具有性質(zhì):
(1)對(duì)任意a,b∈R,a*b=b*a;
(2)對(duì)任意a∈R,a*0=a;
(3)對(duì)任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=(2x)*
1
2x
的性質(zhì),有如下說(shuō)法:①函數(shù)f(x)的最小值為3;②函數(shù)f(x)為奇函數(shù);③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-
1
2
),(
1
2
,+∞)
.其中所有正確說(shuō)法的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案