【題目】已知數(shù)列中,,(且).
(1)求的值;
(2)是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,請說明理由;
(3)設(shè)數(shù)列的前n項和為,求.
【答案】(1),
(2)存在,
(3)
【解析】
(1)由 ,及遞推公式,計算即可求得的值;
(2) 設(shè),利用,求得,再證明即證得存在實數(shù),使得數(shù)列為等差數(shù)列;
(3) 由(2)知,數(shù)列為首項是2,公差是1的等差數(shù)列,求得,利用分組求和及錯位相減法即可求得結(jié)果.
解:(1),,.
(2)方法一:假設(shè)存在實數(shù),使得數(shù)列為等差數(shù)列,
設(shè),由為等差數(shù)列,則有,
,,解得.
又.
,所以存在實數(shù),使得數(shù)列為首項是2,公差是1的等差數(shù)列.
方法二:設(shè),
,
∴當(dāng)時,為常數(shù),此時,
所以存在實數(shù),使得數(shù)列為首項是2,公差是1的等差數(shù)列.
方法三:,,兩邊同除得,
即,又,
所以存在實數(shù),使得數(shù)列為首項是2,公差是1的等差數(shù)列.
(3)由(2)知,數(shù)列為首項是2,公差是1的等差數(shù)列,
,,
記,則,令,則
,
①
②
①-②得
,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過平面直角坐標(biāo)系中的點P(4-3a,)(a∈R)作圓x2+y2=1的兩條切線PA,PB,切點分別為A,B,則數(shù)量積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市的電視發(fā)射搭CD建在市郊的一座小山上,如圖所示,小山高BC為30米,在地平面上有一點A,測得A,C兩點間距離為50米.
(1)如果從點A觀測電視發(fā)射塔的視角∠CAD=,求這座電視發(fā)射塔的高度;
(2)點A在何位置時,角∠CAD最大.(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)如圖所示的莖葉圖記錄了甲、乙兩組各四名同學(xué)的投籃命中次數(shù), 乙組記錄中有一個數(shù)據(jù)模糊,無法確認, 在圖中以表示.
(Ⅰ)如果乙組同學(xué)投籃命中次數(shù)的平均數(shù)為, 求及乙組同學(xué)投籃命中次數(shù)的方差;
(Ⅱ)在(Ⅰ)的條件下, 分別從甲、乙兩組投籃命中次數(shù)低于10次的同學(xué)中,各隨機選取一名, 記事件A:“兩名同學(xué)的投籃命中次數(shù)之和為17”, 求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,將曲線的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,得到曲線,過點作直線,交曲線于兩點,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:
①若,,則
②若,,,則
③若,,則
④若,,則
其中正確命題的序號是( )
A.①和②B.②和③C.③和④D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線與圓C相切,圓心C的坐標(biāo)為
(1)求圓C的方程;
(2)設(shè)直線y=x+m與圓C交于M、N兩點.
①若,求m的取值范圍;
②若OM⊥ON,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年“十一”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調(diào)查,將他們在某段高速公路的車速()分成六段: , , , , , ,后得到如圖的頻率分布直方圖.
(1)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值;
(2)若從車速在的車輛中任抽取2輛,求車速在的車輛恰有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和,對任意正整數(shù),總存在正數(shù)使得, 恒成立:數(shù)列的前項和,且對任意正整數(shù), 恒成立.
(1)求常數(shù)的值;
(2)證明數(shù)列為等差數(shù)列;
(3)若,記 ,是否存在正整數(shù),使得對任意正整數(shù), 恒成立,若存在,求正整數(shù)的最小值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com