已知:函數(shù)f(x)=ax(0<a<1),
(Ⅰ)若f(x0)=2,求f(3x0);
(Ⅱ)若f(2x2-3x+1)≤f(x2+2x-5),求x的取值范圍.
分析:(1)根據(jù)題意求出ax0,再由指數(shù)的運算表示出f(3x0),整體代入求值;
(2)先由a的范圍判斷出函數(shù)的單調(diào)性,再由單調(diào)性將不等式轉(zhuǎn)化為:2x2-3x+1≥x2+2x-5,求解即可.
解答:解:(1)由題意得,f(x0)=ax0=2,
∴f(3x0)=a3x0=(ax0)3=8,
(2)∵0<a<1,∴函數(shù)f(x)=ax在定義域上遞減,
∵f(2x2-3x+1)≤f(x2+2x-5),
∴2x2-3x+1≥x2+2x-5,即x2-5x+6≥0,
解得x≥3或x≤2,
故x的取值范圍是{x|x≥3或x≤2}.
點評:本題考查了指數(shù)函數(shù)的單調(diào)性的靈活應(yīng)用,以及整體思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在(-∞,0)∪(0,+∞)上有意義,且在(0,+∞)上是減函數(shù),f(1)=0,又有函數(shù)g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域為(-1,1),當(dāng)x∈(0,1)時,f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判斷f(x)在(0,1)上的單調(diào)性,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)f(x)=xa的圖象過點(
1
2
,
2
2
)
,則f(x)在(0,+∞)單調(diào)遞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=x3-6x2+3x+t,t∈R.
(1)①證明:a3-b3=(a-b)(a2+ab+b2
②求函數(shù)f(x)兩個極值點所對應(yīng)的圖象上兩點之間的距離;
(2)設(shè)函數(shù)g(x)=exf(x)有三個不同的極值點,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案