【題目】 在新冠肺炎疫情的影響下,重慶市教委響應(yīng)停課不停教,停課不停學(xué)的號(hào)召進(jìn)行線上教學(xué),某校高三年級(jí)的甲、乙兩個(gè)班中,根據(jù)某次數(shù)學(xué)測(cè)試成績(jī)各選出5名學(xué)生參加數(shù)學(xué)建模競(jìng)賽,已知這次測(cè)試他們?nèi)〉玫某煽?jī)的莖葉圖如圖所示,其中甲班5名學(xué)生成績(jī)的平均分是83,乙班5名學(xué)生成績(jī)的中位數(shù)是86.

1)求出,的值,且分別求甲、乙兩個(gè)班中5名學(xué)生成績(jī)的方差,并根據(jù)結(jié)果,你認(rèn)為應(yīng)該選派哪一個(gè)班的學(xué)生參加決賽,并說明你的理由.

2)從成績(jī)?cè)?/span>85分及以上的學(xué)生中隨機(jī)抽取2名,用表示來(lái)自甲班的人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望.

【答案】1;;;應(yīng)選甲班參加,詳見解析(2)詳見解析

【解析】

1)根據(jù)甲班5名學(xué)生成績(jī)的平均分是83,利用求解,再根據(jù)乙班5名學(xué)生成績(jī)的中位數(shù)是86,利用中位數(shù)的定義求解.然后分別求得方差,根據(jù)平均數(shù)和方差的大小作出選擇.

2)甲班中85分及以上的有2人,得到隨機(jī)變量X的所有可能取值為0,1,2.PX=k=k=0,12)求得相應(yīng)的概率,列出分布列再求期望..

1)因?yàn)榧装?/span>5名學(xué)生成績(jī)的平均分是83,

所以

解得

因?yàn)橐野?/span>5名學(xué)生成績(jī)的中位數(shù)是86,

所以

所以,

∵因?yàn)?/span>,

所以,

所以,說明甲班同學(xué)成績(jī)更加穩(wěn)定,故應(yīng)選甲班參加.

2)隨機(jī)變量X的所有可能取值為0,1,2.

PX=k=k=0,1,2.

所以,隨機(jī)變量X的分布列為:

X

0

1

2

P

隨機(jī)變量X的數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)推出消費(fèi)抽現(xiàn)金活動(dòng),顧客消費(fèi)滿1000元可以參與一次抽獎(jiǎng),該活動(dòng)設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)以及參與獎(jiǎng),獎(jiǎng)金分別為:一等獎(jiǎng)200元、二等獎(jiǎng)100元、三等獎(jiǎng)50元、參與獎(jiǎng)20元,具體獲獎(jiǎng)人數(shù)比例分配如圖,則下列說法中錯(cuò)誤的是(

A.獲得參與獎(jiǎng)的人數(shù)最多

B.各個(gè)獎(jiǎng)項(xiàng)中一等獎(jiǎng)的總金額最高

C.二等獎(jiǎng)獲獎(jiǎng)人數(shù)是一等獎(jiǎng)獲獎(jiǎng)人數(shù)的兩倍

D.獎(jiǎng)金平均數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)有教師400人,其中高中教師240人.為了了解該校教師每天課外鍛煉時(shí)間,現(xiàn)利用分層抽樣的方法從該校教師中隨機(jī)抽取了100名教師進(jìn)行調(diào)查,統(tǒng)計(jì)其每天課外鍛煉時(shí)間(所有教師每天課外鍛煉時(shí)間均在分鐘內(nèi)),將統(tǒng)計(jì)數(shù)據(jù)按,,分成6組,制成頻率分布直方圖如下:假設(shè)每位教師每天課外鍛煉時(shí)間相互獨(dú)立,并稱每天鍛煉時(shí)間小于20分鐘為缺乏鍛煉.

1)試估計(jì)本校教師中缺乏鍛煉的人數(shù);

2)從全市高中教師中隨機(jī)抽取3人,若表示每天課外鍛煉時(shí)間少于10分鐘的人數(shù),以這60名高中教師每天課外鍛煉時(shí)間的頻率代替每名高中教師每天課外鍛煉時(shí)間發(fā)生的概率,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】角谷猜想,也叫猜想,是由日本數(shù)學(xué)家角谷靜夫發(fā)現(xiàn)的,是指對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1;如果它是偶數(shù),則對(duì)它除以2,如此循環(huán)最終都能夠得到1.如:取,根據(jù)上述過程,得出63,105,16,8,4,2,1,共9個(gè)數(shù).若,根據(jù)上述過程得出的整數(shù)中,隨機(jī)選取兩個(gè)不同的數(shù),則這兩個(gè)數(shù)都是偶數(shù)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新高考取消文理科,實(shí)行“3+3”,成績(jī)由語(yǔ)文、數(shù)學(xué)、外語(yǔ)統(tǒng)一高考成績(jī)和自主選考的3門普通高中學(xué)業(yè)水平考試等級(jí)性考試科目成績(jī)構(gòu)成.為了解各年齡層對(duì)新高考的了解情況,隨機(jī)調(diào)查50人(把年齡在[15,45)稱為中青年,年齡在[45,75)稱為中老年),并把調(diào)查結(jié)果制成如表:

1)請(qǐng)根據(jù)上表完成下面2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為對(duì)新高考的了解與年齡(中青年、中老年)有關(guān)?

附:K2.

2)現(xiàn)采用分層抽樣的方法從中老年人中抽取8人,再?gòu)倪@8人中隨機(jī)抽取2人進(jìn)行深入調(diào)查,求事件A:“恰有一人年齡在[4555)”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定下列四個(gè)命題,其中真命題是(

A.垂直于同一直線的兩條直線相互平行

B.若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行

C.垂直于同一平面的兩個(gè)平面相互平行

D.若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若無(wú)窮數(shù)列滿足:存在,對(duì)任意的,都有為常數(shù)),則稱具有性質(zhì)

1)若無(wú)窮數(shù)列具有性質(zhì),且,求的值

2)若無(wú)窮數(shù)列是等差數(shù)列,無(wú)窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,判斷是否具有性質(zhì),并說明理由.

3)設(shè)無(wú)窮數(shù)列既具有性質(zhì),又具有性質(zhì),其中互質(zhì),求證:數(shù)列具有性質(zhì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的參數(shù)方程為為參數(shù)),與圓關(guān)于直線對(duì)稱的圓為.以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程是

1)設(shè)直線軸和軸的交點(diǎn)分別為,,為圓上的任意一點(diǎn),求的最大值.

2)過點(diǎn)且與直線平行的直線交圓兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理(即確定一個(gè)居民月均用水量標(biāo)準(zhǔn):用水量不超過的部分按照平價(jià)收費(fèi),超過的部分按照議價(jià)收費(fèi)).為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),通過抽樣獲得了40位居民某年的月均用水量(單位:噸),按照分組制作了頻率分布直方圖,

1)從頻率分布直方圖中估計(jì)該40位居民月均用水量的眾數(shù),中位數(shù);

2)在該樣本中月均用水量少于1噸的居民中隨機(jī)抽取兩人,其中兩人月均用水量都不低于0.5噸的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案