若f(x+2)的定義域是[-2,3),則f(x)的定義域是
 
分析:f(x+2)的定義域是[-2,3),即其中x的范圍是[-2,3),由此求出x+2的范圍即可得到f(x)的定義域.
解答:解:由f(x+2)的定義域是[-2,3),
即-2≤x<3,
得0≤x+2<5.
∴f(x)的定義域是[0,5).
故答案為:[0,5).
點(diǎn)評:本題考查了簡單抽象函數(shù)的定義域的求法,給出函數(shù)f[g(x)]的定義域,求f(x)的定義域,實(shí)則是求g(x)的值域,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(x)在定義域上是減函數(shù),
(Ⅰ)求函數(shù)y=f(x-1)定義域;
(Ⅱ)若f(x-2)+f(x-1)<0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),f(0)≠0,當(dāng)x>0時,f(x)>1,且對任意實(shí)數(shù)a,b,有f(a+b)=f(a)•f(b).
(1)求證:f(0)=1;
(2)求證:對任意的x∈R,恒有f(x)>0;
(3)若f(x-2)•f(2x-x2)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-2)的圖象關(guān)于(2,0)成中心對稱,設(shè)s,t滿足不等式f(s2-4s)≥-f(4t-t2),若-2≤s≤2時,則3t+s的范圍是
[-8,16]
[-8,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)是增函數(shù),且函數(shù)y=f(x-2)的圖象關(guān)于(2,0)成中心對稱,若s,t滿足不等式f(s2-4s)≥-f(4t-t2),若-2≤s≤2時,則3t+s的最大值為
16
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•門頭溝區(qū)一模)定義在 R上的函數(shù)y=f(x)是減函數(shù),且函數(shù)y=f(x+2)的圖象關(guān)于點(diǎn)(-2,0)成中心對稱,若s,t滿足不等式組
f(t)+f(s-2)≤0
f(t-s)≥0
,則當(dāng)2≤s≤3時,2s+t的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案