如圖,邊長為的等邊三角形的中線與中位線交于點(diǎn),已知平面)是旋轉(zhuǎn)過程中的一個(gè)圖形,有下列命題:

①平面平面;
//平面;
③三棱錐的體積最大值為;
④動(dòng)點(diǎn)在平面上的射影在線段上;
⑤二面角大小的范圍是.
其中正確的命題是         (寫出所有正確命題的編號(hào)).
①②③④

試題分析:①中由已知可得四邊形是菱形,則,所以平面,所以面,①正確;又,∴∥平面;,②正確;當(dāng)面⊥面時(shí),三棱錐的體積達(dá)到最大,最大值為,③正確;由面,可知點(diǎn)在面上的射影在線段上,所以④正確;在旋轉(zhuǎn)過程中二面角大小的范圍是,⑤不正確.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

四棱錐,底面為平行四邊形,側(cè)面底面.已知,,為線段的中點(diǎn).

(Ⅰ)求證:平面
(Ⅱ)求面與面所成二面角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,,, ,.

(Ⅰ)證明:;
(Ⅱ)若求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在如圖所示的幾何體中,四邊形均為全等的直角梯形,且.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱柱中,平面

(Ⅰ)從下列①②③三個(gè)條件中選擇一個(gè)做為的充分條件,并給予證明;
,②;③是平行四邊形.
(Ⅱ)設(shè)四棱柱的所有棱長都為1,且為銳角,求平面與平面所成銳二面角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四棱錐S-ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論中不正確的是(  )
A.ACSB
B.AB∥平面SCD
C.SA與平面SBD所成的角等于SC與平面SBD所成的角
D.ABSC所成的角等于DCSA所成的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果正四棱錐的底面邊長為2,側(cè)面積為,則它的側(cè)面與底面所成的(銳)二面角的大小為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)兩條不相交的空間直線a與b, 必存在平面a, 使得(      )
A. aÌa, bÌaB.a(chǎn)Ìa, b//aC. a^a, b^aD.a(chǎn)Ìa, b^a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三棱錐中,,平面,分別是直線上的點(diǎn),且

(1) 求二面角平面角的余弦值
(2) 當(dāng)為何值時(shí),平面平面

查看答案和解析>>

同步練習(xí)冊(cè)答案