設(shè)函數(shù)。
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)當(dāng)時(shí),試判斷函數(shù)的單調(diào)性,并證明。

解:(1)當(dāng)時(shí),    ….  
當(dāng)且僅當(dāng),即時(shí)取等號(hào),∴  . 6分
(2)當(dāng)時(shí),任取
        ……………. 8分
,∴

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)在(0,1)內(nèi)是增函數(shù).
(1)求實(shí)數(shù)的取值范圍;
(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)
已知函數(shù)且存在使
(I)證明:是R上的單調(diào)增函數(shù);
(II)設(shè)其中 
證明:
(III)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域
(2)求函數(shù)的值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知: 是定義在區(qū)間上的奇函數(shù),且.若對(duì)于任意的時(shí),都有
(1)解不等式
(2)若對(duì)所有恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)判斷函數(shù)y=在區(qū)間[2,6]上的單調(diào)性,并求最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)已知函數(shù)
(I)求函數(shù)上的最小值;
(II)對(duì)一切恒成立,求實(shí)數(shù)的取值范圍;
(III)求證:對(duì)一切,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/f/1ajmh4.png" style="vertical-align:middle;" />,且同時(shí)滿(mǎn)足下列條件:
(1)是奇函數(shù);
(2)在定義域上單調(diào)遞減;
(3)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知
(1)求的定義域.
(2)判斷函數(shù)的奇偶性.
(3)解不等式

查看答案和解析>>

同步練習(xí)冊(cè)答案