設有兩個命題:
①“關于x的不等式x2+(a-1)x+a2>0的解集是R”;
②“函數(shù)f(x)=(2a2+a+1)x是R上的減函數(shù)”. 若命題①和②中至少有一個是真命題,求實數(shù)a的取值范圍.
分析:根據(jù)二次不等式恒成立的充要條件,可以求出命題①為真命題時,a的取值范圍,根據(jù)指數(shù)函數(shù)的單調性與底數(shù)的關系,可以求出命題②為真命題時,a的取值范圍,結合命題①和②中至少有一個是真命題可得a的取值范圍
解答:解:若命題①為真命題,則x=(a-1)2-4a2<0,…(2分)
解之得a<-1或a>
1
3
,…(5分)
若命題②為真命題,則0<2a2+a+1<1,…(7分)
解之得-
1
2
<a<0
,…(10分)
所以至少有一個為真命題的a的取值范圍為a<-1或-
1
2
<a<0或a>
1
3
.…(14分)
點評:本題以命題的真假判斷為載體考查了二次不等式恒成立的充要條件及指數(shù)函數(shù)的單調性,是函數(shù)與不等式問題的綜合應用,難度中檔
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設有兩個命題:①關于x的不等式mx2+1>0的解集是R;②函數(shù)f(x)=logmx是減函數(shù),如果這兩個命題有且只有一個真命題,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設有兩個命題:
①關于x的不等式x2+mx+1>0的解集是R,
②函數(shù)f(x)=logmx是減函數(shù).
如果這兩個命題中有且只有一個真命題,則實數(shù)m的取值范圍是
(-2,0]∪[1,2)
(-2,0]∪[1,2)

查看答案和解析>>

科目:高中數(shù)學 來源:2007年天津市漢沽一中高三第一次調研數(shù)學試卷(解析版) 題型:解答題

設有兩個命題:①關于x的不等式mx2+1>0的解集是R;②函數(shù)f(x)=logmx是減函數(shù),如果這兩個命題有且只有一個真命題,則實數(shù)m的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學專項復習:集合與函數(shù)(解析版) 題型:解答題

設有兩個命題:①關于x的不等式mx2+1>0的解集是R;②函數(shù)f(x)=logmx是減函數(shù),如果這兩個命題有且只有一個真命題,則實數(shù)m的取值范圍是   

查看答案和解析>>

同步練習冊答案