已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸的非負(fù)半軸上,點(diǎn)到短
軸端點(diǎn)的距離是4,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值是6.
(1)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(2)若為焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),動(dòng)點(diǎn)滿足,問是否存在一個(gè)定點(diǎn),使到點(diǎn)的距離為定值?若存在,求出點(diǎn)的坐標(biāo)及此定值;若不存在,請(qǐng)說明理由.
(1) 橢圓的標(biāo)準(zhǔn)方程為. 離心率
(2) 存在一個(gè)定點(diǎn),使到點(diǎn)的距離為定值,其定值為
【解析】本試題主要是考查了橢圓方程的求解以及軌跡方程的求解來判定點(diǎn)是否存在。
(1)根據(jù)已知中橢圓的幾何性質(zhì)得關(guān)于參數(shù)a,b,c的關(guān)系式,進(jìn)而解得。
(2)利用比值為定值,設(shè)出點(diǎn)的坐標(biāo),然后利用M的軌跡方程求解得到結(jié)論。
解:(1)設(shè)橢圓長半軸長及半焦距分別為,由已知得
.
所以橢圓的標(biāo)準(zhǔn)方程為.……………………6分
離心率…………………………7分
(2),設(shè)由得
……………………10分
化簡得,即……………………12分
故存在一個(gè)定點(diǎn),使到點(diǎn)的距離為定值,其定值為………13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
10 | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
25 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
2 |
3 |
4 |
3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com