已知函數(shù)f(x)=kx+m,數(shù)列{an},{bn}滿足:當(dāng)x∈[a1,b1]時(shí),f(x)的值域是[a2,b2];當(dāng)x∈[a2,b2]時(shí),f(x)的值域是[a3,b3],……,當(dāng)x∈[an-1,bn-1](n∈N*,且n≥2)時(shí),f(x)的值域是[an,bn],其中k,m為常數(shù),a1=0,b1=1.

(1)若k=1,m=2,求a2,b2以及數(shù)列{an}與{bn}的通項(xiàng);

(2)若k=2,且數(shù)列{bn}是等比數(shù)列,求m的值;

(3)若k>0,設(shè){an}與{bn}的前n項(xiàng)和分別為Sn和Tn,求(T1+T2+…+Tn)-(S1+S2+…+Sn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:黑龍江省鶴崗一中2010-2011學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:013

已知函數(shù)f(x)=(k-1)ax-a-x(a>0,a≠1)為奇函數(shù),且為增函數(shù),則函數(shù)y=ax+k的圖象為

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省余姚中學(xué)2011屆高三第一次質(zhì)量檢測理科數(shù)學(xué)試題 題型:044

已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.

(Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時(shí),將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;

(Ⅱ)當(dāng)k=4時(shí),若對x1∈(1,+∞),x2∈[1,2],使f(x1)≤g(x2),試求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年普通高等學(xué)校招生全國統(tǒng)一考試山東卷數(shù)學(xué)理科 題型:044

已知函數(shù)f(x)=(k為常數(shù),e=2.71828……是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行.

(Ⅰ)求k的值;

(Ⅱ)求f(x)的單調(diào)區(qū)間;

(Ⅲ)設(shè)g(x)=(x2+x)(x),其中(x)為f(x)的導(dǎo)函數(shù),證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年普通高等學(xué)校招生全國統(tǒng)一考試山東卷數(shù)學(xué)文科 題型:044

已知函數(shù)f(x)=(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與x軸平行.

(Ⅰ)求k的值;

(Ⅱ)求f(x)的單調(diào)區(qū)間;

(Ⅲ)設(shè)g(x)=x(x),其中(x)為f(x)的導(dǎo)函數(shù).證明:對任意x>0,g(x)<1+e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(k為常數(shù),e=2.718 28…是自然對數(shù)的底數(shù)),曲線yf(x)在點(diǎn)(1,f(1))處的切線與x軸平行.

(1)求k的值;

(2)求f(x)的單調(diào)區(qū)間;

(3)設(shè)g(x)=(x2x)f′(x),其中f′(x)為f(x)的導(dǎo)函數(shù),證明:對任意x>0,g(x)<1+e-2.

查看答案和解析>>

同步練習(xí)冊答案