已知線段PQ的端點Q的坐標(biāo)是(4,3),端點P在圓x2+y2+2x-3=0上運動,求線段PQ的中點M的軌跡方程.
考點:軌跡方程
專題:計算題,直線與圓
分析:設(shè)出M和P點的坐標(biāo),由中點坐標(biāo)公式得到兩點坐標(biāo)的關(guān)系,把M的坐標(biāo)用P的坐標(biāo)表示,代入圓的方程后整理得答案.
解答: 解:圓(x+1)2+y2=4的圓心為C(-1,0),半徑長為2,
線段PQ的中點為M(x,y),P(a,b),則a=2x-4,b=2y-3,則
∵端點P在圓x2+y2+2x-3=0上運動,
∴所求軌跡方程為:(2x-4+1)2+(2y-3)2=4,
即(x-1.5)2+(y-1.5)2=1.
點評:本題考查了軌跡方程,訓(xùn)練了利用代入法求動點的軌跡,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點O是面積為4的△ABC內(nèi)部一點,且有
OA
+
OB
+2
OC
=
0
,則△AOC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

投資商到一開發(fā)區(qū)投資72萬元建起一座蔬菜加工廠,第一年共支出12萬元,以后每年支出增加4萬元,從第一年起每年蔬菜銷售收入50萬元.設(shè)f(n)表示前n年的純利潤總和(f(n)=前n年的總收入一前n年的總支出一投資額).
(1)該廠從第幾年開始盈利?
(2)若干年后,投資商為開發(fā)新項目,對該廠有兩種處理方案:①年平均純利潤達(dá)到最大時,以48萬元出售該廠;②純利潤總和達(dá)到最大時,以10萬元出售該廠,問哪種方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a4=5,a2+a8=14,數(shù)列{bn}滿足b1=1,bn+1=2 an+3•bn
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{
1
log2bn+1
}的前n項和;
(3)若cn=an•(
2
 an+1,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點(1,
2
2
),離心率為
2
2
,左、右焦點分別為F1、F2.點P為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標(biāo)原點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線PF1、PF2的斜線分別為k1、k2.證明:
1
k1
-
3
k2
=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓O1,圓O2的極坐標(biāo)方程分別為ρ=4cosθ,ρ=-4sinθ,
(1)把圓O1,圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)求經(jīng)過圓O1,圓O2交點的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,a1=1,an=
Sn
n
+2 (n-1)(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關(guān)于n的表達(dá)式;
(2)是否存在自然數(shù)n,使得S1+
S2
2
+
S3
3
+…+
Sn
n
-(n-1)2=2013?若存在,求出n的值;若不存在,請說明理由.
(3)設(shè)Cn=
2
n(an+7)
(n∈{N*}),Tn=c1+c2+c3+…+cn(n∈N*),是否存在最大的整數(shù)m,使得對任意n∈N*均有Tn
m
32
成立?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
a
x+1
,a為常數(shù).
(1)若a=
9
2
,求函數(shù)f(x)在[1,e]上的值域;(e為自然對數(shù)的底數(shù),e≈2.72)
(2)若函數(shù)g(x)=f(x)+x在[1,2]上為單調(diào)減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-2:矩陣與變換
若二階矩陣M滿足M
12
34
=
710
46

(Ⅰ)求二階矩陣M;
(Ⅱ)把矩陣M所對應(yīng)的變換作用在曲線3x2+8xy+6y2=1上,求所得曲線的方程.

查看答案和解析>>

同步練習(xí)冊答案