△ABC的外接圓半徑為1,且滿足下列三個(gè)條件:
; ②;  ③
(Ⅰ)試判斷△ABC的形狀; (Ⅱ)求的值.
【答案】分析:(Ⅰ)由條件①中等號(hào)右邊的第二項(xiàng)變形后,前兩項(xiàng)提取,利用平面向量的減法法則計(jì)算后,得到,根據(jù)平面向量的數(shù)量積運(yùn)算法則得到CA與CB垂直,從而得到∠C為直角,確定出三角形為直角三角形;
(Ⅱ)由條件②得到M為AB中點(diǎn),由條件③得到C為MN中點(diǎn),根據(jù)第一問(wèn)得到∠C為直角,故以C為原點(diǎn),CA所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)出A和B的坐標(biāo),利用勾股定理表示出|AB|的長(zhǎng),由直角三角形的外接圓半徑為1,得出斜邊長(zhǎng)為2,即|AB|=2,列出關(guān)于a與b的等式,利用中點(diǎn)坐標(biāo)公式表示出M及N的坐標(biāo),進(jìn)而表示出,利用平面向量數(shù)量積運(yùn)算法則計(jì)算后,把得出的a與b的等式代入即可求出值.
解答:解:(Ⅰ)由條件①知:
(3分)
.即CA⊥CB.
∴△ABC為直角三角形;(5分)

(Ⅱ)由條件②知M為AB的中點(diǎn),(6分) 由條件③知C為MN的中點(diǎn).(7分)
以C為原點(diǎn),CA所在直線為x軸建立直角坐標(biāo)系.
設(shè)A(a,0),B(0,b),又△ABC的外接圓半徑為1,
則有.(8分)
,

.(12分)
點(diǎn)評(píng):此題考查了三角形形狀及其判斷,涉及的知識(shí)有平面向量的數(shù)量積運(yùn)算,平面向量數(shù)量積為0時(shí)兩向量滿足的關(guān)系,以及中點(diǎn)坐標(biāo)公式,第二問(wèn)根據(jù)∠C為直角,建立平面直角坐標(biāo)系,設(shè)出A和B的坐標(biāo),根據(jù)勾股定理及直角三角形的外接圓半徑列出a與b的關(guān)系式,兩次利用中點(diǎn)坐標(biāo)公式表示出M和N的坐標(biāo),進(jìn)而表示出所求的兩向量,利用平面向量的數(shù)量積運(yùn)算法則計(jì)算,整體代入即可求出值.熟練掌握平面向量的數(shù)量積運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,A、B、C分別是三個(gè)內(nèi)角,已知
2
(sin2A-sin2C)=(a-b)sinB,又△ABC的外接圓半徑為
2
,則角C為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=x2-x+1,b=x2-2x,c=2x-1,若a,b,c分別為△ABC的相應(yīng)三邊長(zhǎng),
(1)求實(shí)數(shù)x的取值范圍;
(2)求△ABC的最大內(nèi)角;
(3)設(shè)△ABC的外接圓半徑為R,內(nèi)切圓半徑為r,求
Rr
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,滿足(a-c)(sinA+sinC)=(a-b)sinB,且△ABC的外接圓半徑為
2

(Ⅰ)求角C;
(Ⅱ)求△ABC面積S的最大值,并判斷此時(shí)的三角形形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A、B、C的對(duì)邊長(zhǎng)分別為a、b、c,且sinAcosB=
1
3
,sinBcosA=
1
6
,△ABC的外接圓半徑R=3.
(1)求角C.
(2)求
a
b
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的外接圓半徑R=
3
,角A,B,C的對(duì)邊分別是a,b,c,且
2sinA-sinC
sinB
=
cosC
cosB

(1)求角B和邊長(zhǎng)b;
(2)求S△ABC的最大值及取得最大值時(shí)的a,c的值,并判斷此時(shí)三角形的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案