橢圓9x2+y2=9的長軸長為( 。
A、2B、3C、6D、9
考點:橢圓的標(biāo)準方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:把橢圓9x2+y2=9化為x2+
y2
9
=1,可得a2=9,解得a,即可得到長軸長2a.
解答: 解:橢圓9x2+y2=9化為x2+
y2
9
=1,
∴a2=9,解得a=3.
因此橢圓的長軸長為2a=6.
故選:C.
點評:本題考查了橢圓的標(biāo)準方程及其性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x
x2+a
的圖象如圖所示.
(1)求a的值;
(2)寫出f(x)的單調(diào)遞增區(qū)間,并解方程:f(sinα)+f(cosα)=0;
(3)矩形ABCD的兩個頂點A、B在函數(shù)f(x)的圖象上(位于第一象限,且點A在點B右側(cè)),另兩個頂點C、D在x軸上,設(shè)頂點A的橫坐標(biāo)為t,試用t表示矩形ABCD面積S,并求矩形ABCD面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,d為常數(shù),已知對任意n,m∈N+,當(dāng)n>m時,總有Sn-Sm=Sn-m+m(n-m)d,求證:{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在①1⊆{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④φ?{0}上述四個關(guān)系中,錯誤的個數(shù)是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A={x|-2≤x≤3},B={x|2m-1≤x≤m+1},
(1)當(dāng)B⊆A時,求實數(shù)m的取值范圍;
(2)當(dāng)x∈R時,沒有元素x使x∈A與x∈B同時成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四個數(shù)成等差數(shù)列,四數(shù)之和為24,第二個數(shù)與第三個數(shù)之積為20,求這四個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}為等比數(shù)列,若a3和a7是方程x2+10x+9=0的兩個根,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn,且滿足
S8
S4
=17,則公比q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=Asin(ωx+φ),(A>0,ω>0,|φ|<
π
2
)的最小值是-2,在一個周期內(nèi)圖象最高點與最低點橫坐標(biāo)差是3π,又:圖象過點(0,1).求
(1)函數(shù)解析式;
(2)函數(shù)的最大值、以及達到最大值時x的集合.

查看答案和解析>>

同步練習(xí)冊答案