如圖所示,四邊形是兩個(gè)全等的正方形,分別是、上的點(diǎn),且,求證:平面

  

 


證明:如圖,在平面內(nèi)過點(diǎn),與交于點(diǎn),連結(jié).由,得

    又∵,

    故,知

    于是平面,平面,

,

    ∴平面平面

    而平面,

平面

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形OABP是平行四邊形,過點(diǎn)P的直線與射線OA、OB分別相交于點(diǎn)M、N,若 
OM
=x
OA
,
ON
=y
OB

(1)利用
NM
MP
,把y用x表示出來(lái)(即求y=f(x)的解析式);
(2)設(shè)數(shù)列{an}的首項(xiàng)a1=1,前 n項(xiàng)和Sn滿足:Sn=f(Sn-1)(n≥2),求數(shù)列{an}通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形ABCD是邊長(zhǎng)為1 的 正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E為BC的中點(diǎn).

(1)求異面直線NE與AM所成角的余弦值;

(2)在線段AN上是否存在點(diǎn)S,使得ES⊥平面AMN?

若存在,求線段AS的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山西省晉中市高三上學(xué)期四校聯(lián)考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分10分)

如圖所示,四邊形ABCD是矩形,,F(xiàn)為CE上的點(diǎn),且BF平面ACE,AC與BD交于點(diǎn)G

求證:AE平面BCE

求證:AE//平面BFD

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省永嘉縣普高聯(lián)合體高二第二學(xué)期第一次月考理科數(shù)學(xué)試卷 題型:解答題

如圖所示,四邊形ABCD是邊長(zhǎng)為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E為BC的中點(diǎn).

(1)求異面直線NE與AM所成角的余弦值;

(2)在線段AN上是否存在點(diǎn)S,使得ES⊥平面AMN?若存在,求線段AS的長(zhǎng);若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案