9.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=a(x+b)2+c(a≠0)的圖象如圖所示,則函數(shù)f(x)的圖象可能是(  )
A.B.C.D.

分析 根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可判斷.

解答 解:由f′(x)圖象可知,函數(shù)f(x)先減,再增,再減,
故選:D.

點(diǎn)評 本題考查了導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且滿足2acosC=2b-$\sqrt{3}$c.
(1)求角A;
(2)若B=$\frac{π}{6}$,且BC邊上的中線AM的長為$\sqrt{7}$,求此時△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.《九章算術(shù)》商功章有題:一圓柱形谷倉,高1丈3尺3$\frac{1}{3}$寸,容納米2000斛,(注:1丈=10尺,1尺=10寸,1斛=1.62立方尺,圓周率取3),則圓柱底圓周長約為(  )
A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知各項為正數(shù)的數(shù)列{an}的前{Sn},滿足$\sqrt{2{S_n}}=\frac{{{a_n}+2}}{2}$
(Ⅰ)求證:{an}為等差數(shù)列,并求其通項公式;
(Ⅱ)設(shè){bn}滿足bn+1=2bn,b2=2,求數(shù)列{anbn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若等差數(shù)列{an}的前n項和為Sn,a4=4,S4=10,則數(shù)列$\left\{{\frac{1}{{\;{a_n}{a_{n+1}}\;}}}\right\}$的前2018項的和為$\frac{2018}{2019}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列關(guān)于函數(shù)y=tan(x+$\frac{π}{3}$)的說法正確的是( 。
A.在區(qū)間(-$\frac{π}{6}$,$\frac{5π}{6}$)上單調(diào)遞增B.最小正周期是π
C.圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)成中心對稱D.圖象關(guān)于直線x=$\frac{π}{6}$成軸對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知α,β是不同的平面,m,n是不同的直線,給出下列命題:
①若m?α,n?α,m∥β,n∥β,則α∥β;
②若m?α,n?α,m,n是異面直線,則n與α相交;
③若α∩β=m,n∥m,且n?α,n?β,則n∥α,n∥β.
其中真命題的個數(shù)是( 。
A.1B.2C.3D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在(x+a)9的展開式中,若第四項的系數(shù)為84,則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如果有窮數(shù)列a1,a2,a3,…am(m為正整數(shù))滿足a1=am,a2=am-1,…am=a1,即ai=am-i+1(i=1,2…,m),那么我們稱其為對稱數(shù)列.
(1)設(shè)數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,其中b1,b2,b3,b4為等差數(shù)列,且b1=2,b4=11,依次寫出數(shù)列{bn}的各項;
(2)設(shè)數(shù)列{cn}是項數(shù)為2k-1(正整數(shù)k>1)的對稱數(shù)列,其中ck,ck+1,…,c2k-1是首項為50,公差為-4的等差數(shù)列.記數(shù)列{cn}的各項和為數(shù)列S2k-1,當(dāng)k為何值時,S2k-1取得最大值?并求出此最大值;
(3)對于確定的正整數(shù)m>1,寫出所有項數(shù)不超過2m的對稱數(shù)列,使得1,2,22,…,2m-1依次為該數(shù)列中連續(xù)的項.當(dāng)m>1500時,求其中一個數(shù)列的前2015項和S2015

查看答案和解析>>

同步練習(xí)冊答案