{an}為等差數(shù)列,Sn為其前n項(xiàng)和,a7=5,S7=21,則S10=( 。
分析:分別利用等差數(shù)列的通項(xiàng)公式及求和公式表示已知條件,然后求出得a1,d,在代入求和公式即可求解
解答:解:由題意可得,
a1+6d=5
7a1+21d=21

解可得a1=1,d=
2
3

S10=10×1+
10×9
2
×
2
3
=40
故選A
點(diǎn)評(píng):本題主要考查了等差數(shù)列的 通項(xiàng)公式及求和公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,Sn其前n項(xiàng)和,且a2=3a4-6,則S9等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若平面內(nèi)共線的A、B、P三點(diǎn)滿足條件,
OP
=a1
OA
+a4015
OB
,其中{an}為等差數(shù)列,則a2008等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,a4=2,a7=-4,那么數(shù)列{an}的通項(xiàng)公式為( 。
A、an=-2n+10
B、an=-2n+5
C、an=-
1
2
n+10
D、an=-
1
2
n+5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,若
a7a6
<-1,且它們的前n項(xiàng)和Sn有最大值,則使Sn>0的n的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}為等差數(shù)列,若a2=3,a1+a6=12,則a7+a8+a9=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案