已知拋物線y2=2px(p>0)的焦點F為雙曲線的一個焦點,經(jīng)過兩曲線交點的直線恰過點F,則該雙曲線的離心率為   
【答案】分析:根據(jù)拋物線y2=2px(p>0)的焦點F為雙曲線的一個焦點,可得,利用經(jīng)過兩曲線交點的直線恰過點F,可得(c,2c)為雙曲線的一個點,由此即可求出雙曲線的離心率.
解答:解:由題意,∵拋物線y2=2px(p>0)的焦點F為雙曲線的一個焦點

∵經(jīng)過兩曲線交點的直線恰過點F
,即(c,2c)為雙曲線的一個點

∴(c2-a2)c2-4a2c2=a2(c2-a2
∴e4-6e2+1=0

∵e>1
∴e=
故答案為:
點評:本題考查拋物線與雙曲線的綜合,考查拋物線與雙曲線的幾何性質(zhì),確定幾何量之間的關(guān)系是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,準線為l.
(1)求拋物線上任意一點Q到定點N(2p,0)的最近距離;
(2)過點F作一直線與拋物線相交于A,B兩點,并在準線l上任取一點M,當(dāng)M不在x軸上時,證明:
kMA+kMBkMF
是一個定值,并求出這個值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過點M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點.求證:直線AB經(jīng)過點M的充要條件是OA⊥OB,其中O是坐標原點.

查看答案和解析>>

同步練習(xí)冊答案