設(shè)f(x)=ln2x-1,g(x)=x2-2x
(1)求f(x)的單調(diào)區(qū)間與極值;
(2)當(dāng)x>1時,比較f(x)與g(x)的大小.
(1)f(x)的定義域為(0,+∞)
因為f′(x)=
2lnx
x

由f'(x)=0得x=1
當(dāng)0<x<1時f'(x)<0;當(dāng)x>1時f'(x)>0
∴f(x)的遞減區(qū)間為(0,1),遞增區(qū)間為(1,+∞),
f(x)的極小值為f(1)=-1
(2)由f(x)-g(x)=ln2x-1-x2+2x=ln2x-(x-1)2=(lnx-x+1)(lnx+x-1)
∵x>1
∴l(xiāng)nx+x-1>0
令h(x)=lnx-x+1
h′(x)=
1
x
-1=
1-x
x

當(dāng)x>1時h'(x)<0
∴h'(x)在(1,+∞)是遞減的
∴h(x)<h(1)=0
即  lnx-x+1<0
∴f(x)-g(x)<0
從而f(x)<g(x)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=3-x-ln
2x+1
,實數(shù)a,b,c滿足f(a)f(b)f(c)<0,且0<a<b<c,若x0是函數(shù)的一個零點,下列不等式中不可能成立的 為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ln2x-1,g(x)=x2-2x
(1)求f(x)的單調(diào)區(qū)間與極值;
(2)當(dāng)x>1時,比較f(x)與g(x)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=ln2x-1,g(x)=x2-2x
(1)求f(x)的單調(diào)區(qū)間與極值;
(2)當(dāng)x>1時,比較f(x)與g(x)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省荊州中學(xué)高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)f(x)=ln2x-1,g(x)=x2-2x
(1)求f(x)的單調(diào)區(qū)間與極值;
(2)當(dāng)x>1時,比較f(x)與g(x)的大。

查看答案和解析>>

同步練習(xí)冊答案