17.“a+b<0”是“a與b均為負(fù)數(shù)的”( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分又不必要條件

分析 根據(jù)充分必要條件的定義結(jié)合不等式的性質(zhì)判斷即可.

解答 解:若a=1,b=-2,滿足a+b<0,但不滿足a與b均為負(fù)數(shù),不是充分條件,
由a與b均為負(fù)數(shù),得到a+b<0,是必要條件,
故選:B.

點(diǎn)評 本題考查了充分必要條件,考查不等式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知二次函數(shù)y=ax2+bx+c=0(a≠0)的圖象如圖所示,記p=|a-b+c|+|2a+b|,q=|a+b+c|+|2a-b|,則( 。
A.p>qB.p=q
C.p<qD.p,q大小關(guān)系不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=lg(-x2+2x)的單調(diào)遞減區(qū)間是[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知平面α∩平面β=直線l,點(diǎn)A,C∈α,點(diǎn)B,D∈β,且A,B,C,D∉l,點(diǎn)M,N分別是線段AB,CD的中點(diǎn).( 。
A.當(dāng)|CD|=2|AB|時(shí),M,N不可能重合
B.M,N可能重合,但此時(shí)直線AC與l不可能相交
C.當(dāng)直線AB,CD相交,且AC∥l時(shí),BD可與l相交
D.當(dāng)直線AB,CD異面時(shí),MN可能與l平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖所示,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,過F的直線l交雙曲線的漸近線于A,B兩點(diǎn),且直線l的傾斜角是漸近線OA傾斜角的2倍,若$\overrightarrow{AF}=2\overrightarrow{FB}$,則該雙曲線的離心率為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≤0}\end{array}\right.$,且M(x,-2),N(1,y),則$\overrightarrow{OM}$•$\overrightarrow{ON}$的最大值等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知cos($\frac{π}{2}$+α)=$\frac{3}{5}$,則α∈($\frac{π}{2}$,$\frac{3π}{2}$),則sin2α=( 。
A.-$\frac{24}{25}$B.-$\frac{16}{25}$C.$\frac{24}{25}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y≤3\\ x+3y≥-k\\ y≤1\end{array}\right.$(k∈Z),且z=2x+y的最大值為6,則k的值為( 。
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如果θ是第三象限的角,那么(  )
A.sinθ>0B.cosθ>0C.tanθ>0D.以上都不對

查看答案和解析>>

同步練習(xí)冊答案