如圖,平面PAD⊥平面ABCD,ABCD為正方形,,且分別是線段的中點.

(Ⅰ)求證:PB∥平面EFG;

(Ⅱ)求異面直線EG與BD所成角的余弦值.

答案:
解析:

  (Ⅰ)  1分

    3分

  而  5分

    6分

  (Ⅱ)

    9分

  

    10分

    11分

  所以  12分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB中點,過A、N、D三點的平面交PC于M.
(1)求證:DP∥平面ANC;
(2)求證:M是PC中點;
(3)求證:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB中點,過A、N、D三點的平面交PC于M.
(Ⅰ)求證:AD∥MN;
(Ⅱ)求證:平面PBC⊥平面ADMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為4的菱形,且∠BAD=60°,N是PB的中點,過A,D,N的平面交PC于M,E是AD的中點.
(1)求證:BC⊥平面PEB;
(2)求證:M為PC的中點;
(3)求四棱錐M-DEBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為4的菱形,且∠BAD=60°,N是PB的中點,過A,D,N的平面交PC于M,E是AD的中點.
(1)求證:BC⊥平面PEB;
(2)求證:M為PC的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖22,在四棱錐P—ABCD中,側(cè)面PAD是正三角形,且與底面ABCD垂直,底面ABCD是邊長為2的菱形,∠BAD=60°,N是PB中點,過A、D、N三點的平面交PC于M,E為AD的中點.

圖22

(1)求證:EN∥平面PCD;

(2)求證:平面PBC⊥平面ADMN;

(3)求平面PAB與平面ABCD所成二面角的正切值.

查看答案和解析>>

同步練習(xí)冊答案