13.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)當x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)若關于x的方程f(x)+log2k=0(k為實數(shù))在x∈[$\frac{π}{3}$,$\frac{19π}{24}$]上恒有實數(shù)解,求k的取值范圍.

分析 (1)由題意求出A,T,利用周期公式求出ω,利用當x=$\frac{π}{6}$時取得最大值2,求出φ,得到函數(shù)的解析式即可.
(2)由圖象,得到x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]時,函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求出f(x)的范圍,即可求k的取值范圍.

解答 解:(1)由題意可知A=2,T=4($\frac{5π}{12}$-$\frac{π}{6}$)=π,ω=2,
當x=$\frac{π}{6}$時取得最大值2,所以 2=2sin(2x+φ),所以φ=$\frac{π}{6}$,
函數(shù)f(x)的解析式:f(x)=2sin(2x+$\frac{π}{6}$);
(2)由圖象,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]時,函數(shù)f(x)的單調(diào)遞增區(qū)間是[-$\frac{π}{6}$,$\frac{π}{6}$],[$\frac{2π}{3}$,$\frac{5π}{6}$];
(3)∵x∈[$\frac{π}{3}$,$\frac{19π}{24}$],∴2x+$\frac{π}{6}$∈[$\frac{5π}{6}$,$\frac{7π}{4}$],
∴sin(2x+$\frac{π}{6}$)∈[-1,$\frac{1}{2}$].
∴f(x)∈[-2,1]
∵關于x的方程f(x)+log2k=0(k為實數(shù))在x∈[$\frac{π}{3}$,$\frac{19π}{24}$]上恒有實數(shù)解,
∴-1≤log2k≤2
∴$\frac{1}{2}$≤k≤4.

點評 本題是基礎題,考查由y=Asin(ωx+φ)的部分圖象確定其解析式,注意函數(shù)的周期的求法,考查計算能力,?碱}型.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知tanα=2,則$\frac{2sinα-cosα}{sinα+cosα}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若兩個非零向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,則$\overrightarrow{a}$所在的直線與$\overrightarrow$所在直線的夾角為( 。
A.θB.π-θC.θ或π-θD.與θ無關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的一個上界,已知函數(shù)f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x,g(x)=log${\;}_{\frac{1}{2}}$$\frac{1+x}{x-1}$.
(1)求函數(shù)g(x)在區(qū)間[$\frac{5}{3}$,3]上的所有上界構成的集合;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若定點A(a,2)在圓x2+y2-2ax-3y+a2+a=0的外部,則a的取值范圍是$(2,\frac{9}{4})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)y=sin(2x+$\frac{π}{4}$)+1.
(1)畫出該函數(shù)在長度為一個周期的閉區(qū)間上的簡圖;
(2)求該函數(shù)的對稱中心;
(3)寫出f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設f″(x)>0,則( 。
A.f(1)-f(0)>f′(1)>f′(0)B.f′(1)>f(0)-f(1)>f′(0)C.f′(1)>f(1)-f(0)>f′(0)D.f′(1)>f′(0)>f(1)-f(0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設x,y,z為整數(shù)且x+y+z=3,x3+y3+z3=3,則x2+y2+z2=3或57.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=lgx( 。
A.在區(qū)間(0,+∞)上是增函數(shù)B.在區(qū)間(-∞,+∞)上是增函數(shù)
C.在區(qū)間(0,+∞)上是減函數(shù)D.在區(qū)間(-∞,+∞)上是減函數(shù)

查看答案和解析>>

同步練習冊答案