精英家教網 > 高中數學 > 題目詳情
如果對任意一個三角形,只要它的三邊長a,b,c都在函數f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則f(x)均為“V型函數”.則下列函數:
①f(x)=
x
;  ②g(x)=sinx,x∈(0,π);③h(x)=lnx,x∈[2,+∞),其中是“V型函數”的序號為(  )
分析:任意一個三角形三邊長滿足任意兩邊之和大于第三邊,故由新定義知,判斷是否為“Л型函數”,即判斷a+b>c時,是否一定有f(a)+f(b)>f(c),①③可由基本不等式判斷,②取特值;分析可得答案.
解答:解:設0<a≤b≤c,a+b>c,欲證
a
+
b
c
,只需證明a+b+2
ab
>c,.①是V型函數”;
取 a=
π
2
,b=c=
6
,而sinb+sinc=sina,②不是V型函數”;
由于(a-2)(b-2)≥0,ab-2(a+b)+4≥0,ab≥(a+b)+(a+b)-4>(a+b)>c,③是“V型函數”.
故選B.
點評:本題為新定義題,正確理解定義是解題的關鍵,考查綜合分析和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如果對任意一個三角形,只要它的三邊長a,b,c都在函數f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數”.
(1)判斷下列函數是不是“保三角形函數”,并證明你的結論:
①f(x)=
x
;    ②g(x)=sinx (x∈(0,π)).
(2)若函數h(x)=lnx (x∈[M,+∞))是保三角形函數,求M的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如果對任意一個三角形,只要它的三邊長a,b,c都在函數f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“Л型函數”.則下列函數:①f(x)=
x
;②g(x)=sinx,x∈(0,π);③h(x)=lnx,x∈[2,+∞),其中是“Л型函數”的序號為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數”.在函數①f1(x)=
x
,②f2(x)=x,③f3(x)=x2中,其中
 
是“保三角形函數”.(填上正確的函數序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

(文)一個函數f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“三角形函數”.
(1)判斷f1(x)=
x
,f2(x)=x,f3(x)=x2中,哪些是“三角形函數”,哪些不是,并說明理由;
(2)如果g(x)是定義在R上的周期函數,且值域為(0,+∞),證明g(x)不是“三角形函數”;
(3)若函數F(x)=sinx,x∈(0,A),當A>
6
時,F(x)不是“三角形函數”.

查看答案和解析>>

同步練習冊答案