精英家教網(wǎng)如圖,過拋物線y2=2px(p>0)的頂點作兩條互相垂直的弦OA、OB.
(1)設OA的斜率為k,試用k表示點A、B的坐標;
(2)求弦AB中點M的軌跡方程.
分析:(1)設直線OA的方程為y=kx(k≠0),與拋物線y2=2px(p>0)聯(lián)立即可解出用k表示的A點的坐標,再由條互相垂直的弦OA、OB這一關(guān)系,兩直線過同一點原點,斜率互為負倒數(shù)的關(guān)系得出B的坐標.
(2)由(1),M是AB的中點,故可由中點坐標公式得到點M的以k為參數(shù)的參數(shù)方程,水運參數(shù)k,即可得到所求的點M的軌跡的決不能方程.
解答:解:(1)∵依題意可知直線OA的斜率存在且不為0
∴設直線OA的方程為y=kx(k≠0)
∴聯(lián)立方程
y=kx
y2=2px
解得xA=
2p
k2
,yA=
2p
k
(4分)
-
1
k
代上式中的k,解方程組
y=-
1
k
x
y2=2px
,解得xB=2pk2,yB=-2pk
∴A(
2p
k2
2p
k
),B(2pk2,-2pk)(8分)
(2)設AB中點M(x,y),則由中點坐標公式,得
x=p(
1
k2
+k2)
y=p(
1
k
-k)
(10分)
消去參數(shù)k,得y2=px-2p2;即為M點軌跡的普通方程.(12分)
點評:本題考查直線與圓錐曲線的綜合問題,解題的關(guān)鍵是掌握直線與圓錐曲線位置關(guān)系中的相關(guān)的知識,其中在第一小問中要注意根據(jù)兩直線垂直且過同一點這一關(guān)系,求得點B的坐標,此一技巧大大簡化了計算,注意總結(jié)這一經(jīng)驗且能在類似的題題中進行推廣,其特征是過同一點,且兩直線的斜率之間有一個固定的數(shù)量關(guān)系,本題第二小問所得到的方程是參數(shù)方程,由參數(shù)方程轉(zhuǎn)化為普通方程常用的方法是代入法,加減消元等,做題時要注意選擇合適的方法消去參數(shù).直線與圓錐曲線這一類問題中正確轉(zhuǎn)化,充分利用等量關(guān)系是解題的重中之重.本本類型中的題轉(zhuǎn)化靈活,運算量大,且比較抽象,易出錯,做題時要嚴謹認真.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

78、如圖,過拋物線y2=4x的焦點F的直線交拋物線與圓(x-1)2+y2=1于A,B,C,D四點,則|AB|•|CD|=
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B(|AF|>|BF|),交其準線于點C,若|BC|=2|BF|,且|AF|=2,則此拋物線的方程為
y2=2x
y2=2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過拋物線y2=2px(p>0)的焦點F且傾斜角為60°的直線l交拋物線于A、B兩點,若|AF|=3,則此拋物線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,過拋物線y2=4x焦點的直線依次交拋物線與圓(x-1)2+y2=1于A,B,C,D,則
AB
CD
=
1
1

查看答案和解析>>

同步練習冊答案