,則函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù)為

A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

B

解析考點(diǎn):函數(shù)的零點(diǎn).
分析:根據(jù)a>2,分析導(dǎo)函數(shù)的符號(hào),確定函數(shù)的單調(diào)性,驗(yàn)證f(0),f(2)的符號(hào),結(jié)合圖象可知函數(shù)f(x)=x3-3ax+3 在(0,2)上的零點(diǎn)個(gè)數(shù).

解:∵函數(shù)f(x)=x3-3ax+3
∴f′(x)=3x2-3a=3(x2-a)=3(x+)(x-),
∵a>2,
令f′(x)>0得x>,得函數(shù)f(x)在(,+∞)上是增函數(shù),
令f′(x)<0可得0<x<,得函數(shù)f(x)在(0,)上是減函數(shù),
而f(0)=3>0,f()=(3-3a+3=3-2a<0,
∴函數(shù)f(x)=x3-3ax+3在(0,)上零點(diǎn)有一個(gè).
又f(2)=23-3a×2+3=11-6a<0,
∴函數(shù)f(x)=x3-3ax+3在(,2)上沒有零點(diǎn).
則函數(shù)f(x)=x3-3ax+3在區(qū)間(0,2)上零點(diǎn)的個(gè)數(shù)為1,
故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
(1)等比數(shù)列的前n項(xiàng)和可能為零;
(2)對(duì)k∈R,直線y-kx-1=0與橢圓
x2
5
+
y2
m
=1
恒有公共點(diǎn),實(shí)數(shù)m的取值范圍是m≥1
(3)向量
a
=(x2,x+1)
,
b
=(1-x,t)
,若函數(shù)f(x)=
a
-
b
在區(qū)間上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有
 
(填番號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如右圖(1)所示,定義在區(qū)間上的函數(shù),如果滿     

足:對(duì),常數(shù)A,都有成立,則稱函數(shù)  

在區(qū)間上有下界,其中稱為函數(shù)的下界. (提示:圖(1)、(2)中的常數(shù)、可以是正數(shù),也可以是負(fù)數(shù)或零)

(Ⅰ)試判斷函數(shù)上是否有下界?并說明理由;

(Ⅱ)又如具有右圖(2)特征的函數(shù)稱為在區(qū)間上有上界.

請(qǐng)你類比函數(shù)有下界的定義,給出函數(shù)在區(qū)間

有上界的定義,并判斷(Ⅰ)中的函數(shù)在上是否

有上界?并說明理由;                   

(Ⅲ)若函數(shù)在區(qū)間上既有上界又有下界,則稱函數(shù)

在區(qū)間上有界,函數(shù)叫做有界函數(shù).試探究函數(shù) (是常數(shù))是否是、是常數(shù))上的有界函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試預(yù)測(cè)卷(廣東卷)理科試題 題型:解答題

(本小題滿分14分)對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意∈D,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)是否為R上的“平底型”函數(shù)?   并說明理由;
(Ⅱ)設(shè)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式 對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若函數(shù)是區(qū)間上的“平底型”函數(shù),求的值.
.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省09-10學(xué)年高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本小題滿分14分)對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意∈D,當(dāng)時(shí),恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).

(Ⅰ)判斷函數(shù)是否為R上的“平底型”函數(shù)?并說明理由;

(Ⅱ)設(shè)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式 對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若函數(shù)是區(qū)間上的“平底型”函數(shù),求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省廈門市高三上學(xué)期末理科數(shù)學(xué)卷 題型:選擇題

設(shè)函數(shù)的定義域?yàn)镈,若存在非零實(shí)數(shù)h使得對(duì)于任意,有,且,則稱為M上的“h階高調(diào)函數(shù)”。給出如下結(jié)論:

①若函數(shù)在R上單調(diào)遞增,則存在非零實(shí)數(shù)h使為R上的“h階高調(diào)函數(shù)”;

②若函數(shù)為R上的“h階高調(diào)函數(shù)”,則在R上單調(diào)遞增;

③若函數(shù)為區(qū)間上的“h階高誣蔑財(cái)函數(shù)”,則

④若函數(shù)在R上的奇函數(shù),且時(shí),只能是R上的“4階高調(diào)函數(shù)”。

    其中正確結(jié)論的序號(hào)為        (    )

    A.①③             B.①④           C.②③             D.②④

 

查看答案和解析>>

同步練習(xí)冊(cè)答案