設(shè)f(x)=,利用課本中推導(dǎo)等差數(shù)列前n項(xiàng)和公式的方法,可求得f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)的值是( )
A.
B.4
C.
D.12
【答案】分析:先求出f(x)+f(1-x)的值為常數(shù),然后利用倒序相加法求出代數(shù)式的和,從而求出所求.
解答:解:∵f(x)=,
∴f(x)+f(1-x)=+=+=,
設(shè)S=f(-11)+f(-10)+…+f(0)+…+f(11)+f(12)
所以S=f(12)+f(11)+…+f(0)+…+f(-10)+f(-11)
兩個(gè)式子相加得
2S=×24=8
∴S=4
故選B.
點(diǎn)評(píng):本題主要考查倒序相加求和法,注意代數(shù)式的化簡(jiǎn)方法,基本知識(shí)的靈活應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)fx)=,利用課本中推導(dǎo)等差數(shù)列前n項(xiàng)和的公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值為___________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005-2006學(xué)年四川省巴中市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)f(x)=,利用課本中推導(dǎo)等差數(shù)列前 n項(xiàng)和公式的方法,可求得:f(-5)+f(-4)+f(-3)+…+f(4)+f(5)+f(6)等于( )
A.
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年福建省泉州市南安一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)f(x)=,利用課本中推導(dǎo)等差數(shù)列前n項(xiàng)和的公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省部分重點(diǎn)中學(xué)聯(lián)考高一(下)期中數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)f(x)=,利用課本中推導(dǎo)等差數(shù)列前n項(xiàng)和的公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案