12.已知$\frac{1}{m}$+$\frac{9}{n}$=1且m,n均為正數(shù),當m+n取得最小值時,m•n值為48.

分析 找出m+n的取等條件,進而求m,n的值,問題得以解決

解答 解:(m+n)($\frac{1}{m}$+$\frac{9}{n}$)=1+9+$\frac{9m}{n}$+$\frac{n}{m}$≥10+2$\sqrt{\frac{9m}{n}•\frac{n}{m}}$=16,當且僅當n=3m時取等號,即m=4,n=12時等號,
∴m•n=48,
故答案為:48

點評 本題考查了“乘1法”與基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某小區(qū)的綠化地,有一個三角形的花圃區(qū),若該三角形的三個頂點分別用A,B,C表示,其對邊分別為a,b,c且滿足(2b-c)cosA-acosC=0,則在A處望B、C所成的角的大小為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,已知A,B,C分別為邊a,b,c所對的角,已知$\overrightarrow{CA}•\overrightarrow{CB}=2$,a+b=ab,其面積$S=\sqrt{3}$,則邊c=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)$\sqrt{3}$b是1-a和1+a的等比中項(a>0,b>0),則a+$\sqrt{3}$b的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+cos2x+$\frac{3}{2}$.
(1)當x∈[-$\frac{π}{6}$,$\frac{π}{3}}$]時,求函數(shù)y=f(x)的值域;
(2)已知ω>0,函數(shù)g(x)=f(${\frac{ωx}{2}$+$\frac{π}{12}}$),若函數(shù)g(x)在區(qū)間[-$\frac{2π}{3}$,$\frac{π}{6}}$]上是增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ex,g(x)=ln(x+a).
( I)若已知函數(shù)f(x)的圖象與g(x)圖象有一條通過坐標原點的公切線,求a的值;
( II)當a≤2時,證明:f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-lo{g}_{2}x,x>1}\\{2+{4}^{x},x≤1}\end{array}\right.$,則f(f($\frac{1}{2}$))=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一個算法如下:
第一步,計算m=$\frac{4ac-^{2}}{4a}$.
第二步,若a>0,輸出最小值m.
第三步,若a<0,輸出最大值m.
已知a=1,b=2,c=3,則運行以上步驟輸出的結(jié)果為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知四棱錐P-ABCD的頂點都在球O的球面上,底面ABCD是邊長為2的正方形,且側(cè)棱長都相等,若四棱稚的體積為$\frac{16}{3}$,則該球的表面積為( 。
A.$\frac{32π}{3}$B.$\frac{81π}{4}$C.D.$\frac{243π}{16}$

查看答案和解析>>

同步練習(xí)冊答案