已知拋物線的頂點在原點,焦點在x軸的正半軸上,若拋物線的準(zhǔn)線與雙曲線5x2-y2=20的兩條漸近線圍成的三角形的面積等于4
5
,則拋物線的方程為( 。
A.y2=4xB.y2=8xC.x2=4yD.x2=8y
設(shè)拋物線y2=2px,準(zhǔn)線為x=-
p
2

雙曲線5x2-y2=20的兩條漸近線方程分別為:y=
5
x,y=-
5
x,
這三條直線構(gòu)成三角形面積等于
1
2
×2×
5
×
p
2
×
p
2
=4
5
,
∴p=4.則拋物線的方程為y2=8x.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:天驕之路中學(xué)系列 讀想用 高二數(shù)學(xué)(上) 題型:044

已知拋物線C的對稱軸與y軸平行,頂點到原點的距離為5,若將拋物線C向上平移3個單位,則在x軸上截得的線段為原拋物線C在x軸上截得的線段的一半;若將拋物線C向左平移1個單位,則所得拋物線過原點,求拋物線C的方程.

查看答案和解析>>

同步練習(xí)冊答案