精英家教網(wǎng)已知四邊形ABCD是空間四邊形,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點,求證:四邊形EFGH是平行四邊形.
分析:要證四邊形EFGH是平行四邊形只需證一組對邊平行且相等或兩組對邊平行.
解答:精英家教網(wǎng)證明:在△ABD中,
∵E,H分別是AB,AD的中點
EH∥BD,EH=
1
2
BD

同理,FG∥BD,F(xiàn)G=
1
2
BD

∴EH∥FG,EH=FG
∴四邊形EFGH是平行四邊形.
點評:考查學生對平行四邊形判定的掌握.考查學生的空間想象能力和邏輯思維能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

17、如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M,N分別是AB,PC的中點.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某城市計劃在如圖所示的空地ABCD上豎一塊長方形液晶廣告屏幕MNEF,宣傳該城市未來十年計劃、目標等相關政策.已知四邊形ABCD是邊長為30m的正方形,電源在點P處,點P到邊AD、AB的距離分別為9m,3m,且MN~NE=16~9,線段MN必過點P,端點M、N分別在邊AD、AB上,設AN=xm,液晶廣告屏幕MNEF的面積為Sm2
(1)求S關于x的函數(shù)關系式及其定義域;
(2)若液晶屏每平米造價為1500元,當x為何值時,液晶廣告屏幕MNEF的造價最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC與BD交于E點,F(xiàn)是PD的中點.
(1)求證:PB∥平面AFC;
(2)求多面體PABCF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖:已知四邊形ABCD是邊長為4的正方形,E、F分別是AB,AD的中點,GC垂直于ABCD所在平面,且GC=2.
(1)求異面直線BC與GE所成的角的余弦值;
(2)求平面CBG與平面BGD的夾角的余弦值;
(3)求三棱錐D-GEF的體積.

查看答案和解析>>

同步練習冊答案