精英家教網 > 高中數學 > 題目詳情
在極坐標系中,圓C的極坐標方程為ρ=sinθ,過極點O的一條直線l與圓C相交于O、A兩點,且∠AOx=45°,則OA=
 
考點:簡單曲線的極坐標方程
專題:坐標系和參數方程
分析:過極點O的一條直線l與圓C相交于O、A兩點,且∠AOx=45°,可得|OA|=ρ=sin45°.
解答: 解:∵過極點O的一條直線l與圓C相交于O、A兩點,且∠AOx=45°,
∴|OA|=ρ=sin45°=
2
2

故答案為:
2
2
點評:本題考查了極坐標的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

判斷三角函數的奇偶性.
(1)f(x)=sin(
3x
4
+
2
);
(2)f(x)=lg
sinx+cosx
sinx-cosx
;
(3)f(x)=
1+sinx-cosx
1+sinx+cosx

查看答案和解析>>

科目:高中數學 來源: 題型:

上海自貿區(qū)某進口產品的關稅率為t,其市場價格x(單位:千元)與市場供應量p(單位:萬件)之間近似滿足關系式:P=2 (1-t)(x-5)2
(1)若市場價格為7千元,則市場供應量約為2萬件,試確定t的值;
(2)經調查,市場需求量q(單位:萬件)與市場價格x近似滿足關系式:q=21-x,當t=
3
2
時,為保證市場供應量不低于市場需求量,試求市場價格x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

拋物線x2=2py(p>0)過焦點F的直線l交拋物線于A、B兩點,O為原點,若△AOB面積最小值為8.
(1)求P值
(2)過A點作拋物線的切線交y軸于N,
FM
=
FA
+
FN
,則點M在一定直線上,試證明之.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知(
21
+5)sinθ-7cosθ=2-
21
,求sinθ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中:
①分別和兩條異面直線均相交的兩條直線一定是異面直線
②一個平面內任意一點到另一個平面的距離均相等,那么這平面平行
③三棱錐的四個面可以都是直角三角形
④過兩異面直線外一點能作且只能作出一條直線和這兩條異面直線同時相交
⑤已知平面α,直線a和直線b,且a∩α=a,b⊥a,則b⊥α
其中正確命題的序號是
 
(請?zhí)钌纤心阏J為正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)為奇函數,且在(-∞,0)內是增函數,又f(-2)=0,則f(x)<0的解集為( 。
A、(-2,0)∪(0,2)
B、(-∞,-2)∪(0,2)
C、(-∞,-2)∪(2,+∞)
D、(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知某個幾何體的三視圖如圖,則該幾何體的體積為( 。
A、π+4
B、
π+4
3
C、
2π+4
3
D、π+
4
3

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中:
①經過空間任意一點都可作唯一一個平面與兩條已知異面直線都平行;
②已知平面α,直線a和直線b,且a∩α=A,b⊥a,則b⊥α;
③有兩個側面都垂直于底面的四棱柱為直四棱柱;
④三棱錐中若有兩組對棱互相垂直,則第三組對棱也一定互相垂直;
⑤一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個角的平面角相等或互補,
其中正確命題的序號是
 
(請?zhí)钌纤心阏J為正確命題的序號).

查看答案和解析>>

同步練習冊答案