15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{x-1,x≥0}\end{array}\right.$,若關于x的方程f(x)-a2+2a=0有三個不同的實數(shù)根,則實數(shù)a的取值范圍是0<a<1或1<a<2.

分析 由題意,關于x的方程f(x)-a2+2a=0有三個不同的實數(shù)根,則f(x)=a2-2a有三個不同的交點,可得-1<a2-2a<0,即可求出實數(shù)a的取值范圍.

解答 解:由題意,關于x的方程f(x)-a2+2a=0有三個不同的實數(shù)根,
則f(x)=a2-2a有三個不同的交點,
∵f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{x-1,x≥0}\end{array}\right.$,
∴-1<a2-2a<0,
∴0<a<1或1<a<2,
故答案為0<a<1或1<a<2.

點評 本題考查實數(shù)a的取值范圍,考查方程根的問題,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知等差數(shù)列{an}滿足a1=3,a5=15,數(shù)列{bn}滿足b1=4,b5=31,設正項等比數(shù)列{cn}滿足cn=bn-an
(1)求數(shù)列{an}和{cn}的通項公式;
(2)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x,a∈R
(1)當a=1時,求函數(shù)f(x)的最小值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖,將兩塊三角板拼在一起組成一個平面四邊形ABCD,若$\overrightarrow{AC}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$(x,y∈R).則x+y=1+$\frac{4\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.觀察新生嬰兒的體重,其頻率分布直方圖如圖所示,則新生嬰兒體重在(2700,3000)內(nèi)的頻率為( 。
A.0.001B.0.1C.0.2D.0.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.要得到y(tǒng)=cos(3x-$\frac{π}{3}$)的圖象,只需將函數(shù)y=sin3x的圖象( 。
A.向左平移$\frac{π}{18}$個長度單位B.向右左平移$\frac{π}{18}$個長度單位
C.向左平移$\frac{π}{9}$個長度單位D.向右左平移$\frac{π}{9}$個長度單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x2-2x,則不等式f(x+1)<3的解集是(-4,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=sin(ωx-$\frac{π}{6}$)($\frac{3}{2}$<ω<2),在區(qū)間(0,$\frac{2π}{3}$)上( 。
A.既有最大值又有最小值B.有最大值沒有最小值
C.有最小值沒有最大值D.既沒有最大值也沒有最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如表提供平羅中學某班研究性課題小組在技術改造后制作一玩具模型過程中記錄的產(chǎn)量x(個)與相應的花費資y(百元)的幾組對照數(shù)據(jù)
x3 4 5 6
y2.5 3 4 4.5
(1)請根據(jù)如表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)問該小組技術改造后制作10個這種玩具模型估計需要多少資金?
(附:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值)

查看答案和解析>>

同步練習冊答案