已知橢圓C:的長軸長為,離心率

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若過點B(2,0)的直線(斜率不等于零)與橢圓C交于不同的兩點E,F(xiàn)(E在B,F(xiàn)之間),且OBE與OBF的面積之比為, 求直線的方程.

解:(I)橢圓C的方程為,由題意知,  
 ,又,解得
∴所求橢圓的方程為           ………………4分
(II)由題意知的斜率存在且不為零,
設(shè)方程為 ①,將①代入,整理得
,由    ………………6分
設(shè),,則 ②    ………8分
由已知, , 則 
由此可知,,即     ………………………10分
代入②得,,消去
解得,,滿足      即.         
所以,所求直線的方程為 ……12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的長軸長與短軸長之比為
3
5
,焦點坐標(biāo)分別為F1(-2,0),F(xiàn)2(2,0).
(1)求橢圓C的方程;
(2)已知A(-3,0),B(3,0),p(xp,yp)是橢圓C在第一象限部分上的一動點,且∠APB是鈍角,求xp的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的長軸長與短軸長之比為
3
5
,焦點坐標(biāo)分別為F1(-2,0),F(xiàn)2(2,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)求以橢圓C長軸的端點為焦點,離心率e=
3
2
的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2004•武漢模擬)(理科)已知橢圓C的中心在原點,焦點在x軸上,一條經(jīng)過點(3,-
5
)且方向向量為
V
=(-2,
5
)
的直線l交橢圓C于A、B兩點,交x軸于M點,又
AM
=2
MB

(1)求直線l方程;  
(2)求橢圓C長軸長取值的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當(dāng)m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)第一題滿分4分,第二題滿分6分,第三題滿分8分.
已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當(dāng)m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)是否存在實數(shù)m,使得△PF1F2的邊長為連續(xù)的自然數(shù).

查看答案和解析>>

同步練習(xí)冊答案