【題目】已知函數f(x)為R上的偶函數,g(x)為R上的奇函數,且f(x)+g(x)=log4(4x+1).
(1)求f(x),g(x)的解析式;
(2)若函數h(x)=f(x)﹣ 在R上只有一個零點,求實數a的取值范圍.
【答案】
(1)解:因為, …①,
∴ ,∴ …②
由①②得, ,
(2)解:
由
= .
得: ,
令t=2x,則t>0,即方程 …(*)只有一個大于0的根,
①當a=1時, ,滿足條件;
②當方程(*)有一正一負兩根時,滿足條件,則 ,∴a>1,
③當方程(*)有兩個相等的且為正的實根時,
則△=8a2+4(a﹣1)=0,∴ ,a=﹣1(舍) 時, ,
綜上: 或a≥1
【解析】(1)利用函數的奇偶性列出方程組求解即可得到函數的解析式.(2)利用函數只有一個零點,通過換元法,對a討論,結合二次函數的性質求解即可.
【考點精析】解答此題的關鍵在于理解函數奇偶性的性質的相關知識,掌握在公共定義域內,偶函數的加減乘除仍為偶函數;奇函數的加減仍為奇函數;奇數個奇函數的乘除認為奇函數;偶數個奇函數的乘除為偶函數;一奇一偶的乘積是奇函數;復合函數的奇偶性:一個為偶就為偶,兩個為奇才為奇.
科目:高中數學 來源: 題型:
【題目】如圖,為了測量對岸A,B兩點的距離,沿河岸選取C,D兩點,測得CD=2km,∠CDB=∠ADB=30°,∠ACD=60°,∠ACB=45°,求A,B兩點的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的偶函數f(x)滿足f(x+1)=﹣f(x),且當x∈[﹣1,0]時, ,函數 ,則關于x的不等式f(x)<g(x)的解集為( )
A.(﹣2,﹣1)∪(﹣1,0)
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】f(x),g(x)分別是定義在R上的奇函數和偶函數,當x<0時,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣∞,﹣3)∪(0,3)
B.(﹣∞,﹣3)∪(3,+∞)
C.(﹣3,0)∪(3,+∞)
D.(﹣3,0)∪(0,3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=2sin(2x+ )的圖象為M,則下列結論中正確的是( )
A.圖象M關于直線x=﹣ 對稱
B.由y=2sin2x的圖象向左平移 得到M
C.圖象M關于點(﹣ ,0)對稱
D.f(x)在區(qū)間(﹣ , )上遞增
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},記集合A中元素的個數為n(A),定義m(A,B)= ,若m(A,B)=1,則正實數a的值是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x|x﹣2a|+a2﹣4a(a∈R). (Ⅰ)當a=﹣1時,求f(x)在[﹣3,0]上的最大值和最小值;
(Ⅱ)若方程f(x)=0有3個不相等的實根x1 , x2 , x3 , 求 + + 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com