【題目】已知f(x)是定義在R上的偶函數(shù),且x0時,f(x)log (x1)

(1)f(0),f(1)

(2)求函數(shù)f(x)的解析式;

(3)f(a1)<1,求實數(shù)a的取值范圍.

【答案】(1)f(0)=0,f(1)=-1;(2);(3)(-∞,0)∪(2,+∞).

【解析】試題分析:(1)代入x的值,求出函數(shù)值即可;
(2)根據(jù)函數(shù)的奇偶性求出函數(shù)的解析式即可;
(3)通過討論a的范圍,得到關(guān)于a的不等式,解出即可.

試題解析:

(1)因為當(dāng)x≤0時,f(x)=log (-x+1),

所以f(0)=0.

又因為函數(shù)f(x)是定義在R上的偶函數(shù),

所以f(1)=f(-1)=log [-(-1)+1]=log2=-1,

f(1)=-1.

(2)令x>0,則-x<0,

從而f(-x)=log (x+1)=f(x),

x>0時,f(x)=log (x+1).

∴函數(shù)f(x)的解析式為f(x)=

(3)設(shè)x1,x2是任意兩個值,且x1<x2≤0,

則-x1>-x2≥0,

∴1-x1>1-x2>0.

f(x2)-f(x1)=log (-x2+1)-log (-x1+1)=log>log1=0,

f(x2)>f(x1),

f(x)=log (-x+1)在(-∞,0]上為增函數(shù).

又∵f(x)是定義在R上的偶函數(shù),

f(x)在(0,+∞)上為減函數(shù).

f(a-1)<-1=f(1),

∴|a-1|>1,解得a>2或a<0.

故實數(shù)a的取值范圍為(-∞,0)∪(2,+∞).

點睛: 本題考查利用函數(shù)的奇偶性求函數(shù)解析式,判斷并證明函數(shù)的單調(diào)性,屬于中檔題目.證明函數(shù)單調(diào)性的一般步驟:(1)取值:在定義域上任取,并且(或);(2)作差: ,并將此式變形(要注意變形到能判斷整個式子符號為止);(3)定號;(4)下結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)上的最大值;

(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時,函數(shù)的圖象與軸交于兩點,且,又的導(dǎo)函數(shù).若正常數(shù)滿足條件.試比較與0的關(guān)系,并給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)x = 2處的切線與直線垂直

(Ⅰ)求函數(shù)f (x)的單調(diào)區(qū)間;

(Ⅱ)若存在,使成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的值( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的極坐標(biāo)方程為,直線的參數(shù)方程為.若直線與圓C相交于不同的兩點P,Q.

(Ⅰ)寫出圓C的直角坐標(biāo)方程,并求圓心的坐標(biāo)與半徑;

(Ⅱ)若弦長|PQ|=4,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進行解答,選題情況統(tǒng)計如下表:(單位:人)

立體幾何題

代數(shù)題

總計

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計

30

20

50

(1)能否有97.5%以上的把握認(rèn)為“喜歡空間想象”與“性別”有關(guān)?

(2)經(jīng)統(tǒng)計得,選擇做立體幾何題的學(xué)生正答率為,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做立體幾何題且答錯的學(xué)生中任意抽取兩人對他們的答題情況進行研究,求恰好抽到男女生各一人的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的正方形,,分別為,的中點,平面平面,且.

(1)求證:平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點為,點為其上一點,且

(1)求的值;

(2)如圖,過點作直線交拋物線于兩點,求直線、的斜率之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的方程為x2(y2)21,直線l的方程為x2y0,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.

()APB60°,試求點P的坐標(biāo);

()若P點的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點,當(dāng)CD=時,求直線CD的方程.

查看答案和解析>>

同步練習(xí)冊答案