(2012•道里區(qū)三模)已知拋物線C:y=ax2(a>0)的焦點(diǎn)到準(zhǔn)線的距離為
1
4
,且C上的兩點(diǎn)A(x1,y1),B(x2,y2)關(guān)于直線y=x+m對稱,并且x1x2=-
1
2
,那么m=(  )
分析:先確定拋物線方程,設(shè)出直線AB方程代入拋物線方程,求出AB中點(diǎn)坐標(biāo),即可求得m的值.
解答:解:拋物線C:y=ax2(a>0)可化為x2=
1
a
y
(a>0)
∵拋物線C:y=ax2(a>0)的焦點(diǎn)到準(zhǔn)線的距離為
1
4

1
2a
=
1
4
,∴a=2
∴y=2x2,
∵C上的兩點(diǎn)A(x1,y1),B(x2,y2)關(guān)于直線y=x+m對稱,
∴直線AB斜率為-1,
設(shè)直線方程為y=-x+b與y=2x2聯(lián)立得2x2+x-b=0
x1x2=-
b
2
=-
1
2
,∴b=1
∵x1+x2=-
1
2
,y1+y2=
5
2
,
∴AB中點(diǎn)坐標(biāo)為(-
1
4
5
4

代入y=x+m得m=
3
2

故選A.
點(diǎn)評:本題考查拋物線的標(biāo)準(zhǔn)方程,考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E在棱PB上.
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)當(dāng)PD=
2
AB
,且直線AE與平面PBD成角為45°時(shí),確定點(diǎn)E的位置,即求出
PE
EB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)在△ABC中,角A、B、C所對的邊分別為a、b、c,且acosB-bcosA=
1
2
c
,當(dāng)tan(A-B)取最大值時(shí),角C的值為
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)如圖,設(shè)D是圖中邊長分別為1和2的矩形區(qū)域,E是D內(nèi)位于函數(shù)y=
1
x
(x>0)圖象下方的區(qū)域(陰影部分),從D內(nèi)隨機(jī)取一個(gè)點(diǎn)M,則點(diǎn)M取自E內(nèi)的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)已知函數(shù)f(x)=
kx+1,x≤0
lnx,x>0
,則下列關(guān)于函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)的判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•道里區(qū)三模)已知復(fù)數(shù)z1=1-
3
i
,z2=2
3
-2i
,則
.
z1
.
z2
等于( 。

查看答案和解析>>

同步練習(xí)冊答案