如圖,橢圓中心在坐標(biāo)原點(diǎn),F(xiàn)為左焦點(diǎn),當(dāng)
FB
AB
時(shí),其離心率為
5
-1
2
,此類橢圓被稱為“黃金橢圓”,類比“黃金橢圓”,可推算出“黃金雙曲線”的離心率為( 。
A.
5
+1
2
B.
5
-1
2
C.
5
+1
D.
5
-1

類比“黃金橢圓”,在黃金雙曲線中,|OA|=a,|OB|=b,|OF|=c,
當(dāng)
FB
AB
時(shí),|BF|2+|AB|2=|AF|2,
∴b2+c2+c2=a2+c2+2ac,
∵b2=c2-a2,整理得c2=a2+ac,
∴e2-e-1=0,解得 e=
5
+1
2
,或 e=
-
5
+1
2
(舍去).
故黃金雙曲線的離心率e=
5
+1
2

故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知c是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的半焦距,則
b+c
a
的取值范圍是( 。
A.(1,+∞)B.(
2
,+∞)
C.(1,
2
D.(1,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓
x2
6
+
y2
2
=1和雙曲線
x2
2
-
y2
2
=1的公共焦點(diǎn)為F1,F(xiàn)2,P是兩曲線的一個(gè)交點(diǎn),則∠F1PF2=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P為橢圓
x2
16
+
y2
9
=1
上的一點(diǎn),B1,B2分別為橢圓的上、下頂點(diǎn),若△PB1B2的面積為6,則滿足條件的點(diǎn)P的個(gè)數(shù)為(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F1、F2是橢圓
x2
9
+
y2
7
=1
的兩個(gè)焦點(diǎn),A為橢圓上一點(diǎn),且∠F1AF2=60°,則△F1AF2的面積為( 。
A.
7
3
3
B.
7
2
C.
7
4
D.
7
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

由半橢圓
x2
a2
+
y2
b2
=1
(x≥0)與半橢圓
x2
b2
+
y2
c2
=1
(x≤0)合成的曲線稱作“果圓”,如圖所示,其中a2=b2+c2,a>b>c>0.由右橢圓
x2
a2
+
y2
b2
=1
(x≥0)的焦點(diǎn)F0和左橢圓
x2
b2
+
y2
c2
=1
(x≤0)的焦點(diǎn)F1,F(xiàn)2確定的△F0F1F2叫做果圓的焦點(diǎn)三角形,若果圓的焦點(diǎn)三角形為銳角三角形,則右橢圓
x2
a2
+
y2
b2
=1
(x≥0)的離心率的取值范圍為( 。
A.(
1
3
,1)
B.(
2
3
,1)
C.(
3
3
,1)
D.(0,
3
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
4
+y2=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,若P,F(xiàn)1,F(xiàn)2是一個(gè)直角三角形的三個(gè)頂點(diǎn),則點(diǎn)P到x軸的距離為( 。
A.
1
2
B.
3
3
C.
1
2
3
3
D.以上均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以橢圓上任意一點(diǎn)與焦點(diǎn)所連接的線段為直徑的圓與以長軸為直徑的圓的位置關(guān)系是(  )
A.相離B.相交C.內(nèi)切D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線y=
3
2
x
與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的交點(diǎn)在長軸上的射影恰好為橢圓的焦點(diǎn),則橢圓的離心率是( 。
A.
2
2
B.2C.
2
-1
D.
1
2

查看答案和解析>>

同步練習(xí)冊答案