已知函數(shù)=,=,若曲線和曲線都過點P(0,2),且在點P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若時,≤,求的取值范圍.
(Ⅰ)=4,=2,=2,=2;(Ⅱ)
解析試題分析:(Ⅰ)求四個參數(shù)的值,需尋求四個獨立的條件,依題意
代入即可求出的值;(Ⅱ)構(gòu)造函數(shù),轉(zhuǎn)化為求函數(shù)的最值,記==
(),由已知,只需令的最小值大于0即可,先求的根,得,只需討論和定義域的位置,分三種情況進行,當(dāng)時,將定義域分段,分別研究其導(dǎo)函數(shù)的符號,進而求最小值;當(dāng)時,的符號確定,故此時函數(shù)具有單調(diào)性,利用單調(diào)性求其最小值即可.
試題解析:(Ⅰ)由已知得,而
,代入得,故=4,=2,=2,=2;
(Ⅱ)由(Ⅰ)知,
設(shè)函數(shù)==(),
==, 由題設(shè)知,即,令,得
,
(1)若,則,∴當(dāng)時,,當(dāng)時,,記在時單調(diào)遞減,時單調(diào)遞增,故在時取最小值,而,∴當(dāng)時,,即≤;
(2)若,則,∴當(dāng)時,,∴在單調(diào)遞增,而.∴當(dāng)時,,即≤;
(3)若
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)R,,
(1)求函數(shù)f(x)的值域;
(2)記函數(shù),若的最小值與無關(guān),求的取值范圍;
(3)若,直接寫出(不需給出演算步驟)關(guān)于的方程的解集
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且在時函數(shù)取得極值.
(1)求的單調(diào)增區(qū)間;
(2)若,
(Ⅰ)證明:當(dāng)時,的圖象恒在的上方;
(Ⅱ)證明不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知 ().
(Ⅰ)當(dāng)時,判斷在定義域上的單調(diào)性;
(Ⅱ)若在上的最小值為,求的值;
(Ⅲ)若在上恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),若在點處的切線斜率為.
(Ⅰ)用表示;
(Ⅱ)設(shè),若對定義域內(nèi)的恒成立,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中且.
(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若時,函數(shù)有極值,求函數(shù)圖象的對稱中心坐標(biāo);
(Ⅲ)設(shè)函數(shù) (是自然對數(shù)的底數(shù)),是否存在a使在上為減函數(shù),若存在,求實數(shù)a的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),其中.
(1)若,求在的最小值;
(2)如果在定義域內(nèi)既有極大值又有極小值,求實數(shù)的取值范圍;
(3)是否存在最小的正整數(shù),使得當(dāng)時,不等式恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)試求函數(shù)的單調(diào)區(qū)間和極值;
(2)若 直線與曲線相交于不同兩點,若 試證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com