設(shè)直線方程為(2 m+1)x+(3 m-2)y-18 m+5=0,求證:不論m取何值,所給直線恒經(jīng)過定點.

答案:
解析:

  解:將原方程變形為m(2x+3y-18)+(x-2y+5)=0,則直線所經(jīng)過的定點應(yīng)該滿足2x+3y-18=0,x-2y+5=0,解得x=3,y=4,故直線恒過定點(3,4).

  思路解析:本題要證明直線恒過定點,直接證明無法入手時,可以將變量m分離,則所得方程恒經(jīng)過的定點應(yīng)與m的取值無關(guān).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓x2+y2=1與x軸正半軸的交點為F,AB為該圓的一條弦,直線AB的方程為x=m.記以AB為直徑的圓為⊙C,記以點F為右焦點、短半軸長為b(b>0,b為常數(shù))的橢圓為D.
(1)求⊙C和橢圓D的標(biāo)準(zhǔn)方程;
(2)當(dāng)b=1時,求證:橢圓D上任意一點都不在⊙C的內(nèi)部;
(3)已知點M是橢圓D的長軸上異于頂點的任意一點,過點M且與x軸不垂直的直線交橢圓D于P、Q兩點(點P在x軸上方),點P關(guān)于x軸的對稱點為N,設(shè)直線QN交x軸于點L,試判斷
OM
OL
是否為定值?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-2:矩陣與變換
二階矩陣M對應(yīng)的變換將點(1,-1)與(-2,1)分別變換成點(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)=
2
2
,圓M的參數(shù)方程為
x=2cosθ
y=-2+2sinθ
(其中θ為參數(shù)).
(Ⅰ)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)求圓M上的點到直線的距離的最小值.
(3)選修4一5:不等式選講
已知函數(shù)f(x)=|x-1|+|x+3|.
(Ⅰ)求x的取值范圍,使f(x)為常數(shù)函數(shù);
(Ⅱ)若關(guān)于x的不等式f(x)-a≤0有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州二模)經(jīng)過點F (0,1)且與直線y=-1相切的動圓的圓心軌跡為M點A、D在軌跡M上,且關(guān)于y軸對稱,過線段AD (兩端點除外)上的任意一點作直線l,使直線l與軌跡M 在點D處的切線平行,設(shè)直線l與軌跡M交于點B、C.
(1)求軌跡M的方程;
(2)證明:∠BAD=∠CAD;
(3)若點D到直線AB的距離等于
2
2
|AD|
,且△ABC的面積為20,求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)拋物線方程為,M為直線上任意一點,過M引拋物

線的切線,切點分別為A,B

(I)求證A,M,B三點的橫坐標(biāo)成等差數(shù)列;

(Ⅱ)已知當(dāng)M點的坐標(biāo)為(2,一2p)時,.求此時拋物線的方程

(Ⅲ)是否存在點M.使得點C關(guān)于直線AB的對稱點D在拋物線上,其中,點C滿足(O為坐標(biāo)原點)若存在。求出所有適合題意的點M的坐標(biāo);

若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案