(本小題滿分12分)如圖,在平面四邊形中,是正三角形,,.
(Ⅰ)將四邊形的面積表示成關(guān)于的函數(shù);
(Ⅱ)求的最大值及此時(shí)的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)如圖,ABCD是正方形空地,邊長為30m,電源在點(diǎn)P處,點(diǎn)P到邊AD,AB距離分別為m,m.某廣告公司計(jì)劃在此空地上豎一塊長方形液晶廣告屏幕,.線段MN必須過點(diǎn)P,端點(diǎn)M,N分別在邊AD,AB上,設(shè)AN=x(m),液晶廣告屏幕MNEF的面積為S(m2).
(1)求S關(guān)于x的函數(shù)關(guān)系式及該函數(shù)的定義域;
(2)當(dāng)x取何值時(shí),液晶廣告屏幕MNEF的面積S最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知梯形中,∥,,,、分別是、上的點(diǎn),∥,,是的中點(diǎn).沿將梯形翻折,使平面⊥平面 (如圖).
(I)當(dāng)時(shí),求證: ;
(II)若以、、、為頂點(diǎn)的三棱錐的體積記為,求的最大值;
(III)當(dāng)取得最大值時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題6分)已知圓臺(tái)的母線長為4 cm,母線與軸的夾角為30°,上底面半徑是下底面半徑的,求這個(gè)圓臺(tái)的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)如圖(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分別為AC ,AD ,DE的中點(diǎn),現(xiàn)將△ACD沿CD折起,使平面ACD平面CBED,如圖(乙).
(1)求證:平面FHG//平面ABE;
(2)記表示三棱錐B-ACE 的體積,求的最大值;
(3)當(dāng)取得最大值時(shí),求二面角D-AB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,空間四邊形ABCD被一平面所截,截面EFGH是平行四邊形.
(1)求證:CD∥平面EFGH;
(2)如果AB=CD=a求證:四邊形EFGH的周長為定值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com