對(duì)函數(shù)y=f(x)=4sin(2x+
π
3
)(x∈R)有下列命題:
①函數(shù)y=f(x)的表達(dá)式可改寫為y=4cos(2x-
π
6

②函數(shù)y=f(x)是以2π為最小正周期的周期函數(shù)
③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(-
π
6
,0)對(duì)稱
④函數(shù)y=f(x)的圖象關(guān)于直線x=-
π
6
對(duì)稱
其中正確的命題是
 
分析:利用誘導(dǎo)公式化簡(jiǎn)①,判斷正誤;求出周期判斷②;求出函數(shù)的對(duì)稱中心判定③;對(duì)稱直線方程判斷④的正誤;即可得到解答.
解答:解:①f(x)=4sin(2x+
π
3
)=4cos(
π
2
-2x-
π
3
)=4cos(2x+
π
3
-
π
2
)=4cos(2x-
π
6

②最小正周期T=
ω
=
2
=π,②不正確;
③f(x)=4sin(2x+
π
3
)的對(duì)稱點(diǎn)滿足(x,0)
2x+
π
3
=kπ,x=(k-
π
3
π
2
   k∈Z
(-
π
6
,0)滿足條件
④f(x)=4sin(2x+
π
3
)的對(duì)稱直線滿足
2x+
π
3
=(k+
1
2
)π;x=(k+
1
6
π
2

x=-
π
6
不滿足
故答案為:①③
點(diǎn)評(píng):本題考查正弦函數(shù)的性質(zhì),考查基本概念,基本知識(shí)的理解掌握程度,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)函數(shù)y=f(x)(x1≤x≤x2),設(shè)點(diǎn)A(x1,y1)、B(x2,y2)是圖象上的兩端點(diǎn),O為坐標(biāo)原點(diǎn),且點(diǎn)N滿足
ON
=λ
OA
+(1-λ)
OB
,λ≥0,點(diǎn)M(x,y)在函數(shù)y=f(x)的圖象上,且x=λx1+(1-λ)x2,則稱|MN|的最大值為函數(shù)的“高度”,則函數(shù)f(x)=x2-2x-1在區(qū)間[-1,3]上的“高度”為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們給出如下定義:對(duì)函數(shù)y=f(x),x∈D,若存在常數(shù)C(C∈R),對(duì)任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)
2
=C
,則稱函數(shù)f(x)為“和諧函數(shù)”,稱常數(shù)C為函數(shù)f(x)的“和諧數(shù)”.
(1)判斷函數(shù)f(x)=x+1,x∈[-1,3]是否為“和諧函數(shù)”?答:
 
.(填“是”或“否”)如果是,寫出它的一個(gè)“和諧數(shù)”:
 
.(4分)
(2)證明:函數(shù)g(x)=lgx,x∈[10,100]為“和諧函數(shù)”,
3
2
是其“和諧數(shù)”;
(3)判斷函數(shù)u(x)=x2,x∈R是否為和諧函數(shù),并作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對(duì)函數(shù)y=f(x)定義域內(nèi)的每一個(gè)值x1,都存在唯一的值x2,使得f(x1)f(x2)=1成立,則稱此函數(shù)為“黃金函數(shù)”,給出下列三個(gè)命題:
①y=x-2是“黃金函數(shù)”;
②y=lnx是“黃金函數(shù)”;
③y=2x是“黃金函數(shù)”,
其中正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(2x+
π
2
)+1,x∈R
,則對(duì)函數(shù)y=f(x)描述正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案