已知直角梯形,,,沿折疊成三棱錐,當(dāng)三棱錐體積最大時(shí),求此時(shí)三棱錐外接球的體積
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個(gè)多面體的直觀圖及三視圖如圖所示:(其中M、N分別是AF、BC的中點(diǎn))
(1)求證:MN∥平面CDEF;
(2)求多面體A-CDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是線段AE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使AC∥平面DMF,并說明理由;
(2)在(1)的條件下,求平面MDF將幾何體ADE-BCF分成的兩部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在五面體中,四邊形是邊長(zhǎng)為的正方形,平面,,,,,是的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)求五面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角梯形ABEF中,,,講DCEF沿CD折起,使得,得到一個(gè)幾何體,
(1)求證:平面ADF;
(2)求證:AF平面ABCD;
(3)求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABEDFC為多面體,平面ABED與平面ACFD垂直,點(diǎn)O在線段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.
(1)證明直線BC∥EF;
(2)求棱錐FOBED的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.
(1)求證:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,已知PB=PD=2,PA=.
(1)證明:PC⊥BD;
(2)若E為PA的中點(diǎn),求三棱錐P-BCE的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com