求實數(shù)m取何值時,復數(shù)z=
m2-m
+(m2-10m+9)i是:
(1)實數(shù);       
(2)虛數(shù);        
(3)純虛數(shù).
考點:復數(shù)的基本概念
專題:數(shù)系的擴充和復數(shù)
分析:(1)當m滿足
m2-m≥0
m2-10m+9=0
時,復數(shù)z為實數(shù),解出即可;
(2)當m滿足
m2-m≥0
m2-10m+9≠0
時,復數(shù)z為虛數(shù),解出即可;
(3)當m滿足
m2-m=0
m2-10m+9≠0
時,復數(shù)z為純虛數(shù),解出即可.
解答: 解:(1)當m滿足
m2-m≥0
m2-10m+9=0
時,即m=1,9時,復數(shù)z為實數(shù);
(2)當m滿足
m2-m≥0
m2-10m+9≠0
時,即m≤0或m>1且m≠9時,復數(shù)z為虛數(shù);
(3)當m滿足
m2-m=0
m2-10m+9≠0
時,即m=0時,復數(shù)z為純虛數(shù).
點評:本題考查了復數(shù)為實數(shù)、虛數(shù)、純虛數(shù)的充要條件,考查了根式的定義域,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若等比數(shù)列{an}的前n項和為Sn,且S10=18,S20=24,則S40等于(  )
A、
80
3
B、
76
3
C、
79
3
D、
82
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,Sn為數(shù)列{an}的前n項和,S8<S9,S9=S10,S10>S11,則下列結論錯誤的是( 。
A、d<0
B、S12>S8
C、a10=0
D、S9和S10均為Sn的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈(0,+∞)有下列各式:x+
1
x
≥2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3,x+
27
x3
=
x
3
+
x
3
+
x
3
+
27
x3
≥4成立,觀察上面各式,按此規(guī)律若x+
a
x4
≥5,則正數(shù)a=( 。
A、4
B、5
C、44
D、55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2bcosA=ccosA+acosC.
(1)求角A的大;
(2)若b+c=
2
a,△ABC的面積S=
3
12
,求a的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2cos
x
2
3
sin
x
2
+cos
x
2
)-1,x∈R.
(Ⅰ)求f(
π
3
)的值;
(Ⅱ)設α∈(0,
π
2
),β∈(
π
3
,
π
2
),f(α)=2,f(β)=
8
5
,求f(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,AC=1,BC=3,AB=
7
,M為邊BC上一點
(1)若向量
AM
=
1
3
AB
+
2
3
AC
,求BM的長
(2)若sin∠AMC=
3
3
,求AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從M(2,2)射出一條光線,經過x軸反射后過點N(-8,3),求反射點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若f(x)圖象上存在2個關于原點對稱,則稱f(x)為“局部中心對稱函數(shù)”.
(Ⅰ)已知二次函數(shù)f(x)=ax2+2ax-4(a∈R,a≠0),試判斷f(x)是否為“局部中心對稱函數(shù)”?并說明理由.
(Ⅱ)若f(x)=4x-m•2x+1+m2-4為定義域R上的“局部中心對稱函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案