如圖所示,在棱長(zhǎng)為2的正方體ABCD﹣A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(1)求證:EF⊥B1C;
(2)求三棱錐B1﹣EFC的體積.
(1)證明:連接BD1,BC1
∵E、F分別為DD1、BD的中點(diǎn)
∴EF∥BD1
∵正方體ABCD﹣A1B1C1D1
∴D1C1⊥平面BCC1B1
∴D1C1⊥B1C
∵正方形BCC1B1
∴B1C⊥BC1
∵D1C1∩BC1=C1
∴B1C⊥平面BC1D1
∴B1C⊥BD1
∵EF∥BD1
∴EF⊥B1C
(2)解:∵CB=CD,BF=DF
∴CF⊥BD
∵DD1⊥平面ABCD
∴DD1⊥CF
又DD1∩BD=D
∴CF⊥平面BDD1B1  
又CF=
∵EF⊥平面B1FC
∴EF⊥FB1EF=,F(xiàn)B1=
Rt△B1EF的面積=×EF×FB1=××=
∴V=V=×S×CF==1
∴三棱錐B1﹣EFC的體積為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1、DB的中點(diǎn).
(Ⅰ)求證:EF∥平面ABC1D1;
(Ⅱ)求證:EF⊥B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

17、如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為DD1,DB的中點(diǎn)
(1)求證:EF∥平面ABC1D1; 
(2)求二面角B1-EF-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在棱長(zhǎng)為2的正方體中,E、F分別為DD1、BD的中點(diǎn).  
(1)求證:EF∥面ABC1D1
(2)求證EF∥BD1
(3)求三棱錐VB1-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(I)求證:EF⊥B1C;
(II)求二面角E-FC-D的正切值;
(III)求三棱錐F-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•虹口區(qū)三模)如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(Ⅰ)求證:CF⊥B1E;
(Ⅱ)求三棱錐VB1-EFC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案