【題目】已知函數(shù)R).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求的取值范圍.

【答案】)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(

【解析】

試題(1)求函數(shù)的單調(diào)區(qū)間,實(shí)質(zhì)上就是解不等式得增區(qū)間,解不等式得減區(qū)間;(2)函數(shù)的最大值一般與函數(shù)的單調(diào)性聯(lián)系在一起,本題中,其單調(diào)性要對(duì)進(jìn)行分類,時(shí),函數(shù)上單調(diào)遞增,在上單調(diào)遞減,不合題意,故有,按極值點(diǎn)0的大小分類研究單調(diào)性有最大值.

試題解析:(1)當(dāng)時(shí),

,

,得;令,得

函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

2)由題意

1)當(dāng)時(shí),函數(shù)上單調(diào)遞增,在上單調(diào)遞減,此時(shí),不存在實(shí)

數(shù),使得當(dāng)時(shí),函數(shù)的最大值為

2)當(dāng)時(shí),令,有,

當(dāng)時(shí),函數(shù)上單調(diào)遞增,顯然符合題意.

當(dāng)時(shí),函數(shù)上單調(diào)遞增,

上單調(diào)遞減,處取得極大值,且,

要使對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,

只需,解得,又,

所以此時(shí)實(shí)數(shù)的取值范圍是

當(dāng)時(shí),函數(shù)上單調(diào)遞增,

上單調(diào)遞減,要存在實(shí)數(shù),使得當(dāng)時(shí),

函數(shù)的最大值為,需

代入化簡(jiǎn)得,

,因?yàn)?/span>恒成立,

故恒有,所以時(shí),式恒成立,

綜上,實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則=

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展勞動(dòng)實(shí)習(xí),學(xué)生加工制作零件,零件的截面如圖所示.O為圓孔及輪廓圓弧AB所在圓的圓心,A是圓弧AB與直線AG的切點(diǎn),B是圓弧AB與直線BC的切點(diǎn),四邊形DEFG為矩形,BCDG,垂足為C,tanODC=,,EF=12 cm,DE=2 cm,A到直線DEEF的距離均為7 cm,圓孔半徑為1 cm,則圖中陰影部分的面積為________cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn),點(diǎn)在橢圓.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)經(jīng)過圓上一動(dòng)點(diǎn)作橢圓的兩條切線,切點(diǎn)分別記為,,直線,分別與圓相交于異于點(diǎn),兩點(diǎn).

i)當(dāng)直線,的斜率都存在時(shí),記直線,的斜率分別為.求證:;

ii)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正三角形中,E為邊的中點(diǎn),過ED.沿翻折至的位置,連結(jié).翻折過程中,其中正確的結(jié)論是(

A.;

B.存在某個(gè)位置,使;

C.,則的長(zhǎng)是定值;

D.,則四面體的體積最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新中國(guó)成立70周年國(guó)慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對(duì)祖國(guó)的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為),M為該曲線上的任意一點(diǎn).

1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);

2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的函數(shù)在區(qū)間D上恒有

1)若,求h(x)的表達(dá)式;

2)若,求k的取值范圍;

3)若求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線t為參數(shù)),曲線,(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)射線分別交,A,B兩點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為舉辦甲、乙兩項(xiàng)不同活動(dòng),分別設(shè)計(jì)了相應(yīng)的活動(dòng)方案:方案一、方案二.為了解該校學(xué)生對(duì)活動(dòng)方案是否支持,對(duì)學(xué)生進(jìn)行簡(jiǎn)單隨機(jī)抽樣,獲得數(shù)據(jù)如下表:

男生

女生

支持

不支持

支持

不支持

方案一

200

400

300

100

方案二

350

250

150

250

假設(shè)所有學(xué)生對(duì)活動(dòng)方案是否支持相互獨(dú)立.

(Ⅰ)分別估計(jì)該校男生支持方案一的概率、該校女生支持方案一的概率;

(Ⅱ)從該校全體男生中隨機(jī)抽取2人,全體女生中隨機(jī)抽取1人,估計(jì)這3人中恰有2人支持方案一的概率;

(Ⅲ)將該校學(xué)生支持方案的概率估計(jì)值記為,假設(shè)該校一年級(jí)有500名男生和300名女生,除一年級(jí)外其他年級(jí)學(xué)生支持方案二的概率估計(jì)值記為,試比較的大。ńY(jié)論不要求證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案