【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見》,某校計(jì)劃開設(shè)八門研學(xué)旅行課程,并對(duì)全校學(xué)生的選擇意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果整理成條形圖如下.
上圖中,已知課程為人文類課程,課程為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取的學(xué)生作為研究樣本組(以下簡稱“組M”).
(Ⅰ)在“組M”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?
(Ⅱ)為參加某地舉辦的自然科學(xué)營活動(dòng),從“組M”所有選擇自然科學(xué)類課程的同學(xué)中隨機(jī)抽取4名同學(xué)前往,其中選擇課程F或課程H的同學(xué)參加本次活動(dòng),費(fèi)用為每人1500元,選擇課程G的同學(xué)參加,費(fèi)用為每人2000元.
(ⅰ)設(shè)隨機(jī)變量表示選出的4名同學(xué)中選擇課程的人數(shù),求隨機(jī)變量的分布列;
(ⅱ)設(shè)隨機(jī)變量表示選出的4名同學(xué)參加科學(xué)營的費(fèi)用總和,求隨機(jī)變量的期望.
【答案】(Ⅰ)12,8;(Ⅱ)(ⅰ) 見解析;(ⅱ)6500.
【解析】試題分析:(1)分層抽樣即按比例抽樣(2)根據(jù)題意在自然學(xué)科中抽4人即,然后設(shè)隨機(jī)變量表示選出的4名同學(xué)中選擇課程的人數(shù)故隨機(jī)變量可取0,1,2.再根據(jù)超幾何分布一一列式即可寫出分布列再求期望(3)設(shè)隨機(jī)變量表示選出的4名同學(xué)參加科學(xué)營的費(fèi)用總和,則隨機(jī)變量=6000+500所以E()=6000+500E()
試題解析:
(Ⅰ)選擇人文類課程的人數(shù)為(100+200+400+200+300) 1%=12(人);
選擇自然科學(xué)類課程的人數(shù)為(300+200+300) 1%=8(人).
(Ⅱ)(ⅰ)依題意,隨機(jī)變量可取0,1,2.
; ;
故隨機(jī)變量的分布列為
X | 0 | 1 | 2 |
p |
(ⅱ)法1:依題意,隨機(jī)變量=2000+1500=6000+500,
所以隨機(jī)變量的數(shù)學(xué)期望為
E()=6000+500E()=6000+500()=6500.
(ⅱ)法2:依題意,隨機(jī)變量可取6000,6500,7000.
所以隨機(jī)變量的分布列為
Y | 6000 | 6500 | 7000 |
p |
所以隨機(jī)變量的數(shù)學(xué)期望為E()==6500.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱臺(tái)中, 與分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , , 為中點(diǎn), (, ).
(1)設(shè)中點(diǎn)為, ,求證: 平面;
(2)若到平面的距離為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】幾個(gè)月前,成都街頭開始興起“mobike”、“ofo”等共享單車,這樣的共享單車為很多市民解決了最后一公里的出行難題.然而,這種模式也遇到了一些讓人尷尬的問題,比如亂停亂放,或?qū)⒐蚕韱诬囌紴椤八接小钡龋?/span>
為此,某機(jī)構(gòu)就是否支持發(fā)展共享單車隨機(jī)調(diào)查了50人,他們年齡的分布及支持發(fā)展共享單車的人數(shù)統(tǒng)計(jì)如下表:
年齡 | ||||||
受訪人數(shù) | 5 | 6 | 15 | 9 | 10 | 5 |
支持發(fā)展 共享單車人數(shù) | 4 | 5 | 12 | 9 | 7 | 3 |
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.1的前提下,認(rèn)為年齡與是否支持發(fā)展共享單車有關(guān)系;
年齡低于35歲 | 年齡不低于35歲 | 合計(jì) | |
支持 | |||
不支持 | |||
合計(jì) |
(Ⅱ)若對(duì)年齡在,的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,記選中的4人中支持發(fā)展共享單車的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,兩坐標(biāo)系單位長度相同.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù))。
(Ⅰ)將直線的參數(shù)方程化為普通方程,曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線上到直線的距離為的點(diǎn)的個(gè)數(shù)為,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點(diǎn)在平面上的射影為,有,且.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn)使得⊥平面,如果存在,求的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)狱c(diǎn)到點(diǎn)和直線l: 的距離相等.
(Ⅰ)求動(dòng)點(diǎn)的軌跡E的方程;
(Ⅱ)已知不與垂直的直線與曲線E有唯一公共點(diǎn)A,且與直線的交點(diǎn)為,以AP為直徑作圓.判斷點(diǎn)和圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競賽”活動(dòng).為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照,,,,的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中x、y的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到市政廣場參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),求所抽取的2名同學(xué)來自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(其中e為自然對(duì)數(shù)的底數(shù)),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣,求T(x)在[0,1]上的最大值;
(2)若m=﹣,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.[注意:7<e2<].
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.
求證:
(1)DE∥平面AA1C1C;
(2)BC1⊥AB1 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com